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Jean Clobert (directeur de recherches CNRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Donald L. DeAngelis (professeur USGS, University of Miami, rapporteur)

Pierre-Henri Gouyon (professeur Université Paris XI, président) . . . . . . . . .
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Part I

General introduction and main
results of this thesis

1





Chapter 1

Predator dependence in the
functional response and its
implications in ecology

1.1 Some comments on mathematical population eco-

logy

One of the first mathematical descriptions of population dynamics can be found by the end
of the 18th century when Malthus (1798) introduced what is known today as Malthusian
growth: a population increases exponentially as long as resources are unlimited. Defining
N(t) to be the population abundance at time t this growth can be described by the
differential equation

dN(t)

dt
= rN(t)

with growth rate r. But what happens if resources (e.g., space, food, essential nutri-
ents) are limited? That limited resources can stop population growth was introduced
empirically by Verhulst (1838) in what is called today logistic growth,

dN

dt
= rN(1− N

K
). (1.1)

The carrying capacity K defines some population abundance limit beyond which the
population growth rate becomes negative, while below it, this growth rate is positive.
Thus, K is some equilibrium value towards which the population abundance tends to
converge. K can also be interpreted as a measure of the available resources, the logistic
growth is therefore a model with donor control (Pimm, 1982): the population is controlled
by its resources.

There is another way how a population can be prevented from growing exponentially:
there can be another population that consumes the first population at a rate exceeding this
first populations’ growth rate. Such a predator-prey interaction has first been described
by two persons working independently, Lotka (1924) and Volterra (1926). With P (t) being

3
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the abundance of this second population, the predator, they described the interaction by
the set of differential equations

dN

dt
= rN − aNP

dP

dt
= eaNP − µP (1.2)

with predator attack rate a, conversion efficiency e (percentage of consumed prey biomass
that is converted into predator biomass) and predator mortality rate µ. Depending on
the initial abundances of prey and predator they will cycle eternally, passing periodically
through the initial values (neutral stability). The discovery of a cycling mathematical
predator-prey system coincided with Elton’s (1924) article on fluctuating animal popula-
tions. This initiated the hypotheses that such fluctuations are caused by predator-prey
interactions. Hundreds of papers have investigated this hypotheses and still much is
unknown (see review in Chitty 1996).

However, in this thesis I am not interested in cycling populations. Recall that in
the logistic population growth model control is exercised from the bottom (donor control
or bottom-up). Consider now the prey equilibrium in the Lotka-Volterra predator-prey
system,

N� =
µ

ea
.

Not only is the predator preventing its prey from growing infinitely, its parameters µ, e
and a also define the equilibrium state of the prey. This relation expresses mathematically
what is often called top-down control.

There are no unique definitions in ecology (specifically in the context of trophic chains)
for the terms top-down control/effect and bottom-up control/effect. In general, top-down
control is used in the sense of Hairston et al. (1960), that is that every trophic level has
the potential to control/repress its prey to a low level that is independent of the prey’s
resources, except if it is itself controlled by its own predator (the ‘why the world is green
hypotheses’ in the case of three-level trophic chains, stating that herbivores do not graze
plants down to low levels, thus creating a brown world, because they are controlled by
carnivores). A generalisation of this to food chains of arbitrary length is the exploitation
ecosystem hypotheses (EEH, Fretwell 1977; Oksanen et al. 1981) where trophic levels
an odd number below the top trophic level are top-down controlled, while the others
are bottom-up controlled. A special case are cascading effects (Carpenter et al., 1985;
Carpenter & Kitchell, 1994) that study how changes in the top trophic level cascade
several levels down the trophic chain. Bottom-up effects are the driving factor in donor-
controlled food chains (Pimm, 1982; Berryman et al., 1995) where every trophic level is
uniquely controlled by its resources and its mortality rate is independent of its predators
density. For further information see the discussions in Hunter & Price (1992), Strong
(1992), Power (1992) and Menge (1992) or the well written synthesis in chapter II of
Ponsard (1998). In this thesis, I will talk of bottom-up control when the equilibrium
abundance of a trophic level is positively correlated with the resources on the first trophic
level in the studied system (e.g., increasing K in the case of logistic growth). Top-down
control of a population refers to the case when a change in its predators abundance or
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parameters induces a change in the prey population equilibrium abundance. As will be
seen later, these definitions are not mutually exclusive, a population can be controlled
both top-down and bottom-up.

The two views, top-down and bottom-up, are of general interest because they make
very different predictions how trophic level equilibrium abundances change with increasing
resources (see Table 1.1). For example, to reduce algal density in a eutrophic lake with four
trophic levels (algae, herbivorous zooplankton, carnivorous zooplankton, planktivorous
fish), the bottom-up control proposes that the unique way to do so is to reduce nutrient
levels in the lake, while the top-down approach by Oksanen et al. (1981) suggests that,
on the contrary, fertilizing the lake will reduce algal density by increasing herbivorous
zooplankton density.

Coming now back to the Lotka-Volterra system: are all predator-prey systems of the
top-down control type indicated by this system? Or do there also exist predator-prey
systems that correspond better to bottom-up or mixed types of control? These questions
are of a general interest, because all direct interactions between species at different trophic
levels of a food web are of a predatory nature. The particular choice of the mathematical
form describing the predator-prey interaction in such general food web models can have
profound impacts on the predictions of these models to perturbations at the bottom
(changing nutrient status) or the top (introduction or removal of top predators), see
preceding paragraph. Such predictions are used when deciding about management policy
of exploited natural populations or in conservation biology issues. There is still few known
about the respective importance of top-down or bottom-up forces in natural systems
(Menge, 1992; Power, 1992). In this situation, an ecologist should try to make predictions
that are independent of the type of control, or at least, he should identify the predictions
that are sensitive to the dominance of one of the forces. In the following, I will introduce
a predator-prey model with bottom-up characteristics that can serve as an alternative to
Lotka-Volterra types of predation. By confronting this model and Lotka-Volterra type
models qualitatively and quantitatively with time-series data from observed predator-
prey systems, I hope to gain some information about the controlling mechanisms in these
systems.

1.1.1 A general predator-prey modelling framework

The predator-prey models that will be studied in this thesis follow two general princi-
ples. The first one is that population dynamics can be decomposed into birth and death
processes,

dN

dt
= growth − death.

The second one is the conservation of mass principle (Ginzburg, 1998), stating that preda-
tors can grow only as a function of what they have eaten. With these two principles we
can write the canonical form of a predator-prey system as

dN

dt
= f(N)N − g(N,P )P − µN (N)N

dP

dt
= eg(N,P )P − µP (P )P (1.3)



6 Identifying predator-prey models (PhD Thesis) C. Jost

with prey per capita growth rate f(N), functional response g(N,P ) [prey eaten per preda-
tor per unit of time, Solomon 1949] and natural mortalities µN (N) and µP (P ). The
numerical response (predator per capita growth rate as a function of consumption) is
considered in this framework to be proportional to the functional response. Note that the
system (1.3) becomes the Lotka-Volterra system (1.2) when f(N) = r, g(N,P ) = aN ,
µN (N) = 0 and µP (P ) = µ. Many other forms have been proposed in the literature for
the functions f , g and µx (x ∈ {N,P}). See Appendix A for an (incomplete) collection
of functions I found in the literature. In particular the functional response g has incited
creative works, see Bastin & Dochain (1990) who list over 50 models.

Usually one considers consumption to be the major death cause for the prey. In this
case µN (N) can be neglected and set to 0 (as long as the predator exists). I will follow this
usage in the present thesis, replace the growth rate f(N) by the standard logistic growth
(Verhulst 1838, see Figure 2.3) and also consider predator mortality to be constant as in
the Lotka-Volterra equations, giving the equations

dN

dt
= r

(
1− N

K

)
N − g(N,P )P

dP

dt
= eg(N,P )P − µP. (1.4)

1.1.2 Top-down and bottom-up control in predator-prey models

Traditionally, the functional response in system (1.4) is assumed to be a function of prey
abundance only, g(N,P ) = g(N), e.g.

g(N) = aN (Lotka 1924) (1.5)

g(N) =
aN

1 + ahN
(Holling 1959b) (1.6)

(see Table A.2 for further examples). I will call this case a prey-dependent functional
response (Arditi & Ginzburg, 1989). In this case, the prey equilibrium density is of the
form

N� = g−1
(µ
e

)
.

Thus, as in the Lotka-Volterra case, it is entirely defined by the predator’s parameters.
Graphically, this is expressed in the vertical predator isocline in Figure 4.2a. Increasing
carrying capacity K (enrichment) will only change the prey isocline and result in a desta-
bilization of the equilibrium, the so-called paradox of enrichment (Rosenzweig, 1971).
The traditional prey-dependent approach in the context of framework (1.4) will therefore
always result in a top-down controlled predator-prey model that becomes destabilized
under enrichment.

The previous analysis indicates where we have to change our system (1.4) to break this
pattern: the functional response must also depend on predator abundance, g = g(N,P ).
I will call this case predator dependence. Usually, higher predator density leads to more
frequent encounters between predators. This can cause a loss in predating efficiency
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either simply by time lost to detect that the encountered organism is not a prey (this
time is thus not spent searching for other prey), or because of active interference between
predators (Beddington, 1975; Hassell & Varley, 1969). Therefore, predator abundance
should influence the functional response negatively,

dg(N,P )

dP
< 0.

How this modification changes the top-down pattern will be discussed in more detail in
the next section. There is a large literature on predator dependence of the functional
response in both vertebrates and invertebrates (reviews in Hassell 1978 and in Sutherland
1996, Anholt & Werner 1998, Clark et al. 1999).

In behavioural ecology one finds also the inverse effect, predator facilitation. Coop-
eration between predators can pay off in increased reproductive success. Examples are
lions hunting in pairs rather than alone (Krebs & Davies 1993, p. 278) or patellid limpets
capturing drifting kelp and seaweed debris (Bustamante et al., 1995). However, this thesis
will only consider detrimental predator dependence, which seems to be more frequent.

1.2 Introducing predator dependence

Predator dependence in the functional response has been introduced on many occasions.
The first one that had some echo in the literature was by Hassell & Varley (1969), who
proposed that the attack rate a should decrease with increasing predator density. They
proposed an exponential decrease with rate m,

a = αP−m. (1.7)

Parameter m can be interpreted as an interference coefficient. The stronger predators
interfere one with each other, the larger m should be. While used at first only to explain
attack rates measured in the field, incorporating this attack rate into system (1.4) also
showed a stabilising effect (Beddington, 1975; Beddington et al., 1978). There are two
technical problems with this formulation. First, there is a minor dimensional problem
(Beddington et al., 1978), which can be remedied by introducing a ‘dummy’ parameter
uP with dimension [P ] (representing one ‘unit’ predator) and rewriting (1.7) as

a = α

(
P

uP

)−m

.

Usually, this ‘dummy’ parameter is not mentioned but tacitly assumed (Hassell 1978, p.
84). The second problem is more grave and concerns the mathematical analysis of systems
using this type of attack rate: due to the exponent m it is often impossible to find the
equilibria explicitly, thus rendering stability or other types of analyses much more tedious
(requiring the use of implicit function theory or other more sophisticated techniques).

Both problems can be avoided by introducing predator dependence in the way pro-
posed by Beddington (1975) and DeAngelis et al. (1975),

g(N,P ) =
aN

1 + ahN + cP
(1.8)
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with prey handling time h (the same as in the usual Holling type II functional response
(1.6)) and an empirical constant c. Beddington (1975) derived this model based on be-
havioural mechanisms, assuming that the predator spends its time either searching for
prey, handling prey or handling other predators (recognition, maybe interference). c is in
this context the product of predator encounter rate and predator handling time. The sys-
tem (1.4) together with this functional response can be analysed in the usual way, solving
for equilibria and testing stability (e.g., with the Routh-Hurwitz criteria, Edelstein-Keshet
1988). Doing this, DeAngelis et al. (1975) noted that in case of 1 + ahN � cP this sys-
tem becomes donor controlled. Therefore, the functional response (1.8) provides a simple
way to get bottom-up features in a predator-prey system. However, it has rarely been
used either in mathematical studies or in applications to real ecological systems. Likely
reasons are that the parameter c is difficult to estimate and the mathematical analysis is
not as simple as for example with Lotka-Volterra or Holling type II functional responses
because it is a function of two separate arguments, N and P , forcing the use of partial
differentiation.

1.2.1 A novel approach: ratio-dependent functional responses

A simpler way to include predator dependence has been proposed by Arditi & Ginzburg
(1989), modelling the functional response as a function of one argument only (as in the
traditional way), but this argument being now the ratio prey per predator,

g(N,P ) = g

(
N

P

)
. (1.9)

This is a special case of predator dependence, and models using this type of functional
response are usually called ratio-dependent models (Arditi & Ginzburg, 1989). g(x) is in
general a continuous, increasing and bounded function of its argument x, just as in prey-
dependent models. For example, a frequently used ratio-dependent functional response is
based on an analogy with the Holling type II model (1.6),

g

(
N

P

)
=

αN/P

1 + αhN/P
. (1.10)

The simplicity of the approach allowed Arditi & Ginzburg (1989) to analyse general
food chains and to compare how the equilibria of the different trophic levels change with
changing primary productivity F := f(N)N . The results are summarised in Table 1.1.
It can be seen that in ratio-dependent models equilibria of all trophic levels increase with
higher productivity (independently of the food chain length), while prey-dependent food
chains show an alternating pattern with increase, no change and decrease. In particular,
the second highest trophic level is always top-down controlled, while trophic levels that
are an even number below the top level are bottom-up controlled. The prey-dependent
pattern has been observed in a three-level microbial laboratory food chain (Kaunzinger
& Morin, 1998), although a slight (unexplained) increase of the second trophic level with
enrichment was observed. Oksanen et al. (1981), who analysed prey-dependent food
chains in general, thought to find the pattern predicted by prey-dependent theory in
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Table 1.1: Trends of equilibria of basal prey (N�) and predatory trophic levels (P �
1 ,

P �
2 , etc.) with increasing primary productivity F in either prey-dependent or ratio-

dependent food chains. Arrows indicate the direction of change. Table adapted from
Arditi & Ginzburg (1989).

Prey-dependence Ratio-dependence
Trophic level 2 3 4 5 2 3 4 5

P �
4 ↗ ↗

P �
3 ↗ → ↗ ↗

P �
2 ↗ → ↗ ↗ ↗ ↗

P �
1 ↗ → ↗ ↘ ↗ ↗ ↗ ↗

N� → ↗ ↘ ↗ ↗ ↗ ↗ ↗

data of ecosystems of arctic-subarctic plant communities (Oksanen, 1983). In the field,
the best data are available from freshwater lakes along a gradient of nutrient content.
Extensive studies have shown that the biomasses of all trophic levels (phytoplankton,
herbivorous zooplankton, carnivorous zooplankton, planktivorous fish) increase along a
gradient of enrichment (McCauley et al., 1988; Mazumder, 1994; Mazumder & Lean,
1994; McCarthy et al., 1995; Harris, 1996; Sarnelle et al., 1998). Thus, the observations
conform qualitatively with the predictions of the ratio-dependent model. A number of
explanations have been advanced to explain this pattern (McCauley et al., 1988; Abrams,
1993), predator dependence in the functional response is just one possibility. However,
ratio dependence offers one of the most parsimonious ways to model the observed patterns.
Note that the use of a ratio-dependent functional response in system (1.4) also influences
the link between stability and enrichment (see chapter 5 for details): a change in carrying
capacity K only influences the amplitude of trajectories, but not the stability behaviour
of the equilibrium. This signifies that the paradox of enrichment is closely linked to
the vertical predator isocline and any variation from this will make other responses than
destabilization possible.

Modelling food webs rather than food chains is mathematically more complex. Michal-
ski & Arditi (1995a) and Arditi & Michalski (1995) developed mathematical food webs
with Holling type II, DeAngelis-Beddington and ratio-dependent functional responses.
With the latter a distinctive feature emerged that was not present with the other func-
tional responses: while the dynamics are in a transient state (before reaching equilibrium),
trophic links appeared and disappeared frequently (Michalski & Arditi, 1995b). Once at
equilibrium, there are few links in the food web, but if the food web is observed contin-
uously during transient dynamics, the links accumulate and give very complex looking
food webs such as the cod food web in Lavigne (1996) (reproduction in Yodzis (1995)).

1.2.2 Experimental evidence for ratio dependence

Besides the cited plankton abundances that are correlated with the trophic state of lakes
there is also experimental evidence. There has been a series of experiments with two
cladoceran predator species, Daphnia magna and Simocephalus vetulus, feeding on the
algae Chlorella vulgaris (Arditi et al., 1991b; Arditi & Säıah, 1992). Algae were raised in
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a separate vessel and added at a constant rate to a first vessel with the predator. Outflow
from this vessel (with algae only, predators prevented from migration to the next vessel)
went to a second vessel with predators and so on. The hypotheses was that in case of a
vertical predator isocline (prey dependence) the predator should subsist only in the first
vessel, grazing algae down to a fixed level that cannot sustain predator populations in
the following vessels. On the other side, if the predator isocline is slanted, predators are
likely to survive also in consecutive vessels (see Figure 1.1). The predators chosen for
the experiment had a particular spatial behaviour, Daphnia swimming homogeneously in
the medium while Simocephalus keeps close to the vessel walls. Daphnia followed the
pattern predicted by a vertical predator isocline, while Simocephalus persisted in several
consecutive vessels. In a next step Daphnia were prevented from moving in the whole
vessel while Simocephalus were distributed homogeneously by frequent stirring. With this
setup, Daphnia persisted in several vessels, while Simocephalus only persisted in the first
one. These experiments clearly demonstrate that spatial heterogeneity can cause a slanted
predator isocline. However, they do not show that the predator isocline goes through the
origin, as predicted by ratio-dependent models (Ruxton & Gurney, 1992; Holmgren et al.,
1996). Figure 1.1 illustrates this point for the example of three consecutive vessels. Both
the ratio-dependent model and a DeAngelis-Beddington type model predict qualitatively
the same pattern, namely that predator abundance at equilibrium decreases geometrically
from one vessel to the next.

Figure 1.1: Predictions of the predator equilibrium abundances in the chained vessel
experiments described in Arditi et al. (1991b), for a ratio-dependent model (left)
and a DeAngelis-Beddington type model (right). N is the algae concentration and
P the number of cladoceres. Ison and Isop are prey-isocline and predator-isocline
respectively. D represent cladocere individuals. The first vessel equilibrates as
indicated in (a) and (b), letting N�

1 flow into the second vessel (c) and (d) and so
on. With both models P �

i decreases in a geometrical way.

In another study, Arditi & Akçakaya (1990) reanalyzed data of functional response
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experiments found in the literature (predator-prey and host-parasitoid systems). In all
these experiments both prey and predator abundances were varied and the functional
response was measured as a function of both variables. Arditi & Akçakaya fitted a model
based on the Hassell & Varley (1969) function (1.7),

g(N,P ) = g

(
N

Pm

)
=

αP−mN

1 + αP−mhN
. (1.11)

Note that this Hassell-Varley-Holling functional response is prey-dependent for m = 0
while ratio-dependent form = 1. Actual estimation was done in two steps, first estimating
for each predator density the attack rate a = αP−m by regressing the usual Holling type
II model (nonlinear regression, taking prey depletion into account by use of the random
predator equation, Rogers 1972),

g(N |P ) = aN

1 + ahN
,

then estimating m by linear regression on log-scale using the relation (1.7). These mea-
surements yielded estimates of m that are mostly closer to 1 than to 0, thus indicating
that the predator isoclines should not only be slanted, but that ratio dependence is closer
to real dynamics than prey dependence.

1.2.3 Mechanistic derivations of ratio dependence

One of the most frequent criticisms of ratio-dependent theory concerns its introduction
as a phenomenological model (Murdoch et al., 1998; Abrams, 1994). Originally, Arditi
& Ginzburg (1989) gave several possible mechanisms that can lead to ratio dependence
(different time scales of feeding and population dynamics, predator interference, refuge
for prey, non-random search, general aspects of heterogeneity) but without elaborating
on them. Some of these hypothetical causes have recently been analysed mathematically
and it has been shown that they can indeed lead to ratio dependence. Michalski et al.
(1997) and Poggiale et al. (1998) studied systems where the prey have a refuge patch
and migration of prey between the refuge and the patch with the predator occur at a
slower time scale than the population dynamics in the mixed patch (where predation
is assumed to occur in a prey-dependent way). This model can be aggregated math-
ematically to a one-patch predator-prey model and results in a linear ratio-dependent
functional response. Cosner et al. (1999) studied different ways of spatial organisation of
predators during feeding activity. Depending on the geometry of the predator distribu-
tion (evenly distributed, patchy, aligned), functional responses of several types, including
ratio-dependent, can result.

We can derive ratio dependence also by taking directly the original functional response
proposed by Beddington (1975),

g(N,P ) =
aN

1 + ahN + cP ′ , (1.12)

where c is the product of predator encounter rate and interference time and P ′ = P − uP

is one unit predator (uP ) less than the total predator abundance. Beddington derived this
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form by letting the predator either search for prey, meet a prey and consume (handle) it
or meet a predator and engage in interference (during some constant interference time).
Although there are some problems in his reasoning (Ruxton et al., 1992), this functional
response is often cited in the literature, usually replacing P ′ by P for simplicity. However,
keeping P ′ and rearranging (1.12) gives

g(N,P ) =
aN

(1− cuP ) + ahN + cP
.

For c = 0 this becomes the usual Holling type II functional response, while for c = 1/uP

we obtain a ratio-dependent functional response. The Beddington-DeAngelis model is
thus a true intermediate model like the Hassell-Varley-Holling model (1.11).

Additional mechanistic derivations in the microbiological context are mentioned in
chapter 6: Fujimoto (1963) derived ratio dependence based on enzyme kinetics, while
Characklis (1978) based his reasoning on saturation kinetics applied to mass transfer
limited growth.

1.2.4 Alternatives to predator dependence

Before concluding this section, I should discuss possible alternatives to predator depen-
dence in the functional response. Going back to the general predator-prey system (1.3),
we see that slanted predator isoclines, as they are suggested by the empirical evidence of
correlated equilibria along a gradient of enrichment, could also be explained by density-
dependent predator mortality rates µ(P ) (Gatto, 1991; Gleeson, 1994). The idea of such
a density dependence has been introduced many times in predator-prey or more general
models (DeAngelis et al., 1975; Steele & Henderson, 1981, 1992; Edwards & Brindley,
1996), see also Table A.4. While in predator-prey models this idea indeed gives the
desired correlation between equilibrium abundances, in 3-level food chains with density-
dependent mortality at the highest level there can be negative or positive correlation
between the lower two trophic levels (see section 4.B). More complex patterns are to be
expected with longer food chains. Predator dependence in the functional response thus
offers a more ‘natural’ explanation since this feature yields correlated equilibrium abun-
dances of all trophic levels independently of the specific parameter values. Furthermore,
the functional response data analysed in Arditi & Akçakaya (1990) demonstrate directly
predator dependence of the functional response, while I could not find such experimental
evidence for a density-dependent mortality rate.

Another alternative is to abandon the general framework (1.3), in particular the con-
servation of mass principle. A prominent predator-prey model of this type goes back to
Leslie (1948). This predator-prey model conserved the functional response in the prey
equation, but used a logistic type form in the predator equation,

dN

dt
= r1(1−

N

K
)− g(N)P

dP

dt
= (r2 − b

P

N
)N (1.13)

g(N) = aN (standard Lotka-Volterra interaction).
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An extension is to use a Holling type II functional response (1.6), giving a predator-
prey system analysed by May (1975) and by Tanner (1975) and therefore called in the
literature either the Leslie-May model or the Holling-Tanner model. Two features render
this system interesting: First, the existence of limit cycles where the populations do not
come close to extinction, and second, a more varied link between system stability and
enrichment. The idea of density dependence based on the ratio predator by prey has been
generalised to food webs and is quite prominent under the name logistic food web theory
(Berryman et al., 1995). In the literature these approaches are also often referred to as
ratio-dependent models (Freedman & Mathsen, 1993; Hsu & Huang, 1995), but referring
here to the ratio predator per prey. However, Ginzburg (1998) argues that conservation
of mass is an important feature of food web models and I will discuss in this thesis only
models that comply with this principle.

1.2.5 Ratio dependence: state of the art

The results reviewed in the preceding pages show that predator dependence in the func-
tional response is a frequent feature of laboratory and natural predator-prey populations,
both for theoretical and experimental reasons. Or, the vertical predator isocline pre-
dicted by prey-dependent functional responses in framework (1.4) has experimentally
been proven wrong in many cases. However, many alternatives exist (Hassell & Varley,
1969; Hassell & Rogers, 1972; Beddington, 1975; DeAngelis et al., 1975; Gatto, 1991),
and ratio-dependence is only one possibility, although admittedly a very parsimonious
one that can easily be generalised to food chains and food webs while remaining math-
ematically tractable. This latter argument is in fact a very strong one, since modelling
as a tool in applied ecology (natural resource management, conservation biology, envi-
ronmental impact assessment, etc.) should be simple to apply with few parameters that
need to be estimated, otherwise the proposed models won’t be used by practitioners. Two
parameters for the functional response represent in this context already an upper limit, I
am not aware of any study in applied ecology using more complex functional responses.
Nevertheless, while the reported experiments (Arditi et al., 1991b; Arditi & Säıah, 1992)
and the correlated plankton abundances along a gradient of richness demonstrate that
the predator isocline is not vertical in many cases and that spatial heterogeneity increases
the slope of the predator isocline, both results do not allow to distinguish between general
slanted predator isoclines (Hassell & Varley, 1969; DeAngelis et al., 1975) and a preda-
tor isocline going through the origin as predicted by the ratio-dependent model (see also
Figure 1.1). Arditi & Akçakaya (1990) and McCarthy et al. (1995) are the only papers
with indications that ratio-dependent models are in many systems closer to reality than
prey-dependent models (estimates of the interference parameter m being mostly closer
to 1 than to 0). However, since this parameter m appears in a nonlinear context, being
closer to 1 than to 0 does not mean necessarily that the predator isocline in the range of
observed abundances is better approximated by a diagonal rather than by a vertical line
(see Figure 1.2 and 4.2).

Despite all the empirical and theoretical evidence against prey-dependent predator-
prey models, ratio dependence is still far from being accepted as a valid theoretical frame-
work for modelling predator-prey systems or more complicated food chains and food webs.
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Figure 1.2: The predator iscoline for different values of m in system (1.11). The grey
shaded area indicates the range of values of m found by Arditi & Akçakaya (1990).
For lower values of m the vertical predator isocline might be a better approximation
than the diagonal predator isocline.

While some scientists regard it as complete nonsense (Abrams, 1994, 1997) others are
afraid that it might deflect attention from more general forms of predator dependence
(Murdoch et al., 1998). Still others criticise that predators can potentially persist at
arbitrary low resource levels (Yodzis, 1994). However, this last argument also applies
to logistic growth models, but nobody would argue that logistic growth (1.1) must be
abandoned, e.g., in favour of its counterpart with Allee effect (Allee, 1931) (see section
2.3.1). Furthermore, there is no experimental evidence that disappearance of predators
with decreasing resources is a deterministic rather than a stochastic result. Demographic
stochasticity or mutational meltdown (accumulation of deleterious mutations in small
populations due to the weaker power of selection in comparison to genetic drift, Lynch
et al. 1995) will also show this disappearance of predators at low resource levels. Actu-
ally, the reasoning behind Yodzis’ criticism has best been developed by Oksanen et al.
(1981) and leads to the prediction that richer environments permit the existence of longer
food chains. However, Pimm (1991, p. 224) shows that there is no evidence for such a
correlation between primary productivity and food chain length.

In sum, there remains work on several levels to be done. First, prey-dependent and
ratio-dependent models have to be compared to data on an equal footing, e.g., by statis-
tical comparison tools (nonlinear regression in a likelihood framework) or by developing
experiments that can disprove both types of isoclines, vertical ones and those that go
through the origin. Second, there are still some features in ratio-dependent models that
are mathematically poorly understood (dynamic behaviour at the origin where the models
are not defined). A thorough mathematical understanding of a model can indicate both
weaknesses and potentially strong features. Third, other possibilities of including preda-
tor dependence in an equally simple way as in ratio dependence have to be studied and
confronted with the ratio-dependent approach. The interference parameter m proposed
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by Hassell & Varley (1969) is such a candidate, the functional response proposed by Ashby
(1976) (see Table A.3) another one. In this thesis, I will contribute mainly to the first and
to the second task. Other possibilities of predator dependence are not analysed because
they require more model parameters to have the same range of dynamic behaviours (see
section 2.3.1 and chapter 8).

1.2.6 A short digression: to what density does ‘density depen-

dence’ refer in the functional response?

There is some confusion in the literature about the use of the term density dependence in
the context of predator-prey models since density may refer to prey or predator abundance.
A reasonable approach has been used by Ruxton and coworkers who call the case of
predator-dependence a ‘density-dependent’ functional response (Ruxton & Gurney, 1992;
Ruxton, 1995), because the functional response is intrinsically bound to the predator (no
functional response without predator) and also because density dependence indicates in
its original sense a detrimental character concerning growth of an organism. However,
other authors refer to prey density when using the term ‘density-dependent predation’
(Sih, 1984; Trexler, 1988; Moore, 1988; Mansour & Lipcius, 1991; Possingham et al.,
1994; Anholt & Werner, 1998). This usage goes actually back to the founder of the terms
functional and numerical response, Solomon (1949, p.16): “To be density-dependent, the
enemy must take a greater proportion of the population as the host density increases”.
Solomon himself refers to Varley (1947) and Nicholson (1933) for this usage. Despite the
historical primacy I consider this to be wrong usage of the term. To avoid any confusion
one might call a functional response that only depends on prey density a prey-dependent
functional response. When this function also depends on predator density one can refer
to a predator-dependent functional response.
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Chapter 2

A case of model selection

To compare prey-dependent models to ratio-dependent models in the full generality in-
cluded in these two classes of models is a difficult, if not an impossible task. A possible
approach is to take a parametric representative of each class, both of the same com-
plexity (in the sense of having the same number of parameters and of having the same
range of possible dynamic behaviours), and then confront these two predator-prey models
qualitatively (stability analysis, reaction to parameter changes, temporal dynamics) and
quantitatively (nonlinear regression, likelihood) to ecological data. A better agreement
between one of the models and the data can then be interpreted that the strength of
predator dependence in the functional response is smaller or larger. The data are either
qualitative temporal dynamics of a predator-prey system (plankton dynamics in freshwa-
ter lakes, section 2.2) or time-series data from simple protozoan predator-prey systems,
structurally more complex arthropod systems and complex freshwater plankton systems
(section 2.5).

2.1 The candidate predator-prey models

I will analyse two models. Both have logistic growth of the prey (in the absence of a
predator) and a constant predator mortality rate. The prey-dependent functional response
is of the Holling type II form (1.6), while the ratio-dependent model is also of this form,
but with the ratio N/P (prey per predator) as its argument,

dN

dt
= r(1− N

K
)N − g(N,P )P

dP

dt
= eg(N,P )P − µP

(2.1)

aN

1 + ahN
←− g(N,P ) −→ αN/P

1 + αhN/P
.

Both models have six parameters. As will be shown in chapter 4 they have both three
possible equilibria and the dynamics can be either stable coexistence, unstable coexistence
(limit cycle), extinction of the predator only or extinction of both populations (the latter

17
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exists in the prey-dependent model only approximatively, i.e., large amplitude limit-cycle
oscillations bringing the dynamics very close to extinction). These dynamics are also
found in the ecological time-series with which I will confront the models.

Density dependence in the prey growth function is required for two reasons, first,
that the prey population does not explode in the absence of predators, second, because
malthusian growth combined with a bounded functional response would always yield an
unstable non-trivial equilibrium. There are alternative growth functions (Gompertz, 1825;
Rosenzweig, 1971) and we chose the logistic one simply because of its general acceptance.
Both functional responses are bounded (saturation of the consumption), an ecologically
uncontested feature. There are prey-dependent alternatives to the Holling type II func-
tional response that have also two parameters (Ivlev, 1961; Watt, 1959) and we choose
the Holling type II function simply because it is the most widely used and best under-
stood function. There exist also predator-dependent alternatives to the ratio-dependent
functional response, such as the linear Hassell-Varley type functional response,

g(N,P ) = αP−mN,

or the form proposed by Ashby (1976) or Hassell & Rogers (1972),

g(N,P ) =
aN

1 + ahN

1

P
.

While both have only two parameters like the ratio-dependent model, they both have the
drawback that the functional response is unbounded for P → 0 and that in the framework
(2.1) they cannot have an unstable non-trivial equilibrium or stable limit cycles. We can
therefore safely argue that the Holling type II like ratio-dependent functional response is
the only simple predator-dependent functional response whose dynamic behaviours are
comparable to the ones with a Holling type II (prey-dependent) function.

2.1.1 Note on discrete versus continuous models

The two candidate models developed in the preceding section are both continuous time
models (differential equations). Such models apply to large populations that have com-
plete overlap between generations. The opposite extreme to this are populations that are
made up of a single generation, with no overlap between generations (e.g., annual plants).
Such populations should evolve in discrete steps,

Nt+1 = F (Nt, Pt)

Pt+1 = G(Nt, Pt)

(see comments to such models in May (1976a) or in Begon et al. (1996a)). The ratio-
dependent approach has rarely been used in discrete models, the only example to my
knowledge is Carpenter et al. (1993) and Carpenter et al. (1994) (they used discrete
models for technical reasons in their time-series analysis). The real data used in this
thesis for model comparison can all be characterised by overlapping generations with large
populations, they therefore conform better to continuous time models. For this reason
I only used and compared differential equations, which is numerically more demanding
but easier for the theoretical aspects. The usefulness of ratio-dependent approaches in
discrete models remains so far unexplored.
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2.2 Qualitative comparison of models

This section will summarise the ideas and results of the analysis developed in chapter 4.

The best known temporal dynamics from non-laboratory systems probably come from
plankton in freshwater lakes of the temperate zone. Studying the detailed dynamics of
phyto- and zooplankton in 24 lakes of the temperate zone Sommer et al. (1986) developed
a verbal model (PEG-model, PEG standing for Plankton Ecology Group) of these dy-
namics in 24 statements that can be grossly summarised as in Figure 4.1. In early spring
both phytoplankton and zooplankton start growing from the low overwintering levels.
Phytoplankton reaches a very high spring peak, followed by a strong decline to very low
levels due to overgrazing by herbivorous zooplankton and nutrient depletion. This decline
is called the clear water phase (CWP) because the water appears very clear due to the
low phytoplankton levels. After this decline phytoplankton increases again to the spring
peak levels, dominated mostly by inedible species (filamenteous, with defence structures,
toxic), and remains at these levels during the summer until decreasing temperature and
light engender a population decline in autumn. Zooplankton dynamics follow these dy-
namics with some lag with less distinct maxima and minima. The observed dynamics are
quite independent of the trophic state of the lake, only the amplitudes increase and the
spring peak is reached earlier with increasing nutrient status.

2.2.1 Interpretation in the predator-prey context

These dynamics from spring to autumn are interpreted in the PEG-model as the result of
trophic interactions. The simplest possible way is to consider phytoplankton as prey and
zooplankton (mostly Daphnia sp.) as predators and the temporal dynamics correspond
to transient dynamics starting with low initial conditions and reaching the equilibrium
state during summer after some strong oscillations. Chapter 4 explores whether the two
models under consideration in this thesis (2.1) can explain these dynamics and if there
are differences between their predictive power.

In a first step the global dynamics of the two predator-prey systems are analysed.
A first observation concerns the prey equilibrium and how it changes with enrichment
(eutrophication, modelled by carrying capacity K): in the prey-dependent model the
prey-equilibrium is independent of carrying capacity, while the ratio-dependent model
predicts a proportional relationship. Observations of natural lakes show a strong corre-
lation between nutrient status and average phytoplankton abundance (McCauley et al.,
1988; Mazumder & Lean, 1994), thus being in accordance with the ratio-dependent model.
To study the transient dynamics we first construct the isoclines. Both models have a
humped prey isocline and a straight predator isocline, the difference being that the prey-
dependent model has a vertical predator isocline and the ratio-dependent model a diago-
nal one (Figure 4.2). There are maximally three equilibria: the origin (0, 0), the system
without predators (K, 0) and a non-trivial equilibrium. This section focuses on the last
(non-trivial) equilibrium which should be locally stable and reached with oscillations to
conform to the dynamics of the PEG-model. After non-dimensionalisation the regions
in parameter space that permit such dynamics are identified, see Figure 4.3. The main
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difference between the models is, again, the reaction to enrichment (increasing K): desta-
bilization in the prey-dependent model, only increasing amplitudes in the ratio-dependent
model. This makes the ratio-dependent model conform better with the observed dynam-
ics that did not show any sign of destabilization in more eutrophic lakes. However, the
ratio-dependent model can explain the observed earlier attaining of the spring peak in
eutrophic lakes (as described in the PEG-model) only if with eutrophication the growth
rate r also increases.

Despite this slight advantage of the ratio-dependent model, neither model can repro-
duce the PEG-model dynamics: either there is a strong initial oscillation (causing the
CWP), but then the system continues oscillating during the summer, or the system sta-
bilises in early summer but then there is no CWP (Figure 4.5). Apparently, the two
predator-prey systems are too simple to explain the dynamics.

McCauley et al. (1988) suggested that several parameters change during the season:

• growth rate r increases due to higher water temperatures,

• attack rate a (α) decreases due to an increasing proportion of inedible algae,

• predator mortality µ increases due to higher predation (fish larvae) in the later
season.

These potential parameter changes suffice in both models to generate the desired dynamics
(see Figure 4.6 for an example).

We can conclude that both models are too simple to explain the dynamics of the
PEG-model if parameters are fixed, but that both models can explain them if one or
more parameters are allowed to change during the season. The only distinguishable
feature in the models is the reaction to enrichment (if we translate this enrichment as
only increasing carrying capacity K). In this case both models contain predictions that
are incompatible with the PEG-model: the prey-dependent model cannot explain the
increasing phytoplankton equilibrium while the ratio-dependent model cannot explain
the earlier spring peak (or generally the changing period in the oscillations). However, if
enrichment also increases r then both models agree with the PEG-model.

2.2.2 Adding a trophic level

The results mentioned in this subsection are not part of the article in chapter 4. They
form a preliminary assessment how the work of chapter 4 could be continued.

The suggested seasonal parameter changes in the previous paragraph are mostly due
to changes in the influence of another trophic level on the phytoplankton-zooplankton
system (a top predator eating Daphnia, increasing abundance of inedible algae). Instead
of changing the parameter we can also directly model this trophic level. Adding a top
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predator C gives the system

dN

dt
= f(N)N − g1(N,P )P

dP

dt
= e1g1(N,P )P − g2(P,C)C (2.2)

dC

dt
= e2g2(P,C)C − µC.

Bernard & Gouzé (1995) developed a method to study the possible succession of extrema
for this type of food chain models. Following the dynamics of the PEG-model and marking
each trophic level with a + if it increases and with a − if it decreases then we can depict
the PEG-model dynamics in the following succession of ±-vectors (see Appendix D for
details),
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Using the method by Bernard & Gouzé (1995) we can analyse prey- and ratio-dependent
food chains if they can show this succession of events. This analysis shows that both food
chains have exactly the same succession of extrema and can predict the above depicted
succession (see Appendix D for details).

We can make a more quantitative analysis by directly parameterizing system (2.2) with
logistic growth of the prey and prey-dependent or ratio-dependent functional responses (of
the form given in 2.1) and demonstrate that there exist parameter values that produce the
observed dynamics. This represents some kind of model validation since we check whether
the proposed model can show the observed dynamics. We assume the top predator in this
chain to increase in abundance during the season. Figure 2.1 shows such an example
for both types of the functional response. In this 3-level food chain the ratio-dependent
model retains its advantages against the prey-dependent model, notably the correlated
prey and predator equilibria along a gradient of richness.

We can also explicitly model the two types of prey, edible (Ne) and inedible (Ni), that
are in competition one with each other,

dNe

dt
= re(1−

Ne

Ke

)Ne − ceNeNi − g(Ne, P )P

dNi

dt
= ri(1−

Ni

Ki
)Ni − ciNiNe (2.3)

dP

dt
= eg(Ne, P )P − µP,

the functional response being again of the forms (2.1). A reasonable scenario for this sys-
tem is that Ne is a superior competitor to Ni (Agrawal, 1998) but does not exclude it due
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Figure 2.1: Numerical example of a 3-level food chain ‘prey-predator-top predator’
with prey-dependent (a) or ratio-dependent (b) functional response. The character-
istic elements of the PEG-model are well preserved. ————: prey dynamics; – – –:
predator dynamics; — — —: top predator dynamics.

to losses by predation. Figure 2.2 shows a numerical realisation of such a system. Again,
the dynamics of the PEG-model are clearly reproduced. With this scenario both types of
functional response predict a correlation between total prey and predator equilibria along
a gradient of richness.

(a) (b)

time time

Figure 2.2: Numerical example of the dynamics of a system with edible prey, inedible
prey and a predator. Both the prey-dependent (a) and the ratio-dependent (b) model
show the characteristics of the PEG-model. ————: edible prey dynamics; – – –:
inedible prey dynamics; — — —: predator dynamics.

2.2.3 Conclusions

In summary, neither the prey-dependent nor the ratio-dependent predator-prey models
composed of phytoplankton and zooplankton are able to predict seasonal dynamics of
these two levels except if parameters are allowed to change during the season (in which
case both models can predict the dynamics). Nevertheless, the ratio-dependent model
seems to be more realistic in view of the following properties: 1. both phytoplankton and
zooplankton biomasses at equilibrium increase with increasing productivity and 2. there
is no effect of productivity on the stability of the system. To obtain the expected pattern,
with a clear water phase and a stable equilibrium rapidly reached in the summer, the fol-
lowing modifications of the two-level ratio-dependent model are proposed: 1. parameters
of phytoplankton and zooplankton change during the season, 2. introduction of a third
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level (carnivorous zooplankton or fish), 3. introduction of phytoplankton mortality other
than zooplankton grazing (sedimentation, lysis).

2.3 Boundary dynamics: do they matter?

This section summarises the ideas and results of the analysis developed in chapter 5.

In the previous section we have compared our two predator-prey systems (2.1) to data
reaching a stable non-trivial equilibrium. The ratio-dependent model also offers deter-
ministic extinction as a possible outcome (Arditi & Berryman, 1991). However, a ratio-
dependent model is not directly defined at the origin since there occurs a division by 0.
Nevertheless, if we assume a bounded functional response (as in systems 2.1) then the
origin is indeed an equilibrium point, we only cannot apply standard stability analysis
to this point, making that the dynamics around the origin have been badly understood
for a long time. These badly understood dynamics have been repeatedly used to criti-
cize the ratio-dependent concept (Yodzis, 1994; Abrams, 1997) and wrong or unprecise
mathematical results have been published (Getz, 1984; Freedman & Mathsen, 1993).

In collaboration with Ovide Arino I have analysed the analytic behaviour around
the origin in detail. The results are best explained graphically. Figure 5.1 shows pos-
sible isocline portraits of the ratio-dependent model (2.1). Cases 5.1a and 5.1c offer no
mathematical problems, it is the situation in 5.1b that is badly understood. By a trans-
formation of state variables (studying systems (N/P, P ) and (N,P/N) instead of system
(N,P )) one can show that for certain parameter values the origin indeed behaves like a
saddlepoint (Figure 5.2). However, with increasing predator efficiency (visualised by an
increasing slope of the predator isocline) the origin becomes attractive for trajectories
where ‘N goes faster to 0 than P ’. This already happens at parameter values where the
non-trivial equilibrium is still locally stable (Figure 5.3), thus dividing the phase space
into two basins of attraction. The existence of such trajectories is proven for general ratio-
dependent models, only using that the functional response is increasing and bounded and
the per capita prey growth function is a decreasing function of prey abundance. Further
increasing predator efficiency can lead to a destabilization of the non-trivial equilibrium,
giving rise to a stable limit cycle (Figure 5.4). However, the existence of this limit cycle
is still not analytically proven. The problem is that the origin becomes attractive before
the non-trivial equilibrium becomes unstable. Therefore the construction of an invariant
set, as required for the application of the Poincaré-Bendixson theorem to prove the exis-
tence of a stable limit cycle, would require precise knowledge of the separatrix between
the two basins of attraction. Further increasing predator efficiency leads to a homoclinic
bifurcation (detected numerically) after which the origin becomes attractive for all initial
conditions except the (unstable) non-trivial equilibrium itself (Figure 5.5).

Gragnani (1997) raises the point that this deterministic extinction is not a generic be-
haviour, arguing that if we take an intermediate model of the DeAngelis-Beddington type
(1.12) then the origin remains a saddle point for any parameter value but the one that cor-
responds to the ratio-dependent model. The author does not tell that this argumentation
rests completely on the (arbitrary) choice of an intermediate model (by the way, the au-
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thor also completely missed the homoclinic bifurcation, i.e., the global attractivity of the
origin while there exists a non-trivial equilibrium). If we take the Hassell-Varley-Holling
functional response (1.11) as an intermediate model the picture changes somewhat. Cal-
lois (1997) studied this model in detail and showed that deterministic extinction occurs
for m ≥ 1, while the origin is a saddle point for m < 1. It therefore indeed seems that
deterministic extinction is not generic for m ≤ 1.

2.3.1 Some other models that offer deterministic extinction

The following two sections are not detailed in chapter 5. They contain additional ideas
about deterministic extinction and biological control.

Extinction of both prey and predator is usually explained a the result of stochastic events.
However, the consistency of extinction occurring in laboratory predator-prey systems
(Gause, 1934; Luckinbill, 1973; Veilleux, 1979) suggests that it can also happen as a
deterministic outcome. Besides the ratio-dependent model analysed above I only found
two other (simple) predator-prey systems that offer this type of extinction. The first one
is a model with a strong Allee effect (population rate of change becoming negative below a
certain population threshold value ε, Allee 1931) in the prey dynamics and Lotka-Volterra
functional response, e.g. (from Hastings 1997)

dN

dt
= r(1− N

K
)N(

N

ε
− 1)

K

K − ε
− aNP

dP

dt
= eaNP − µP.

Note that a general Allee effect only means that the per capita population growth rate
is maximal not at the origin but at some positive population density (Edelstein-Keshet,
1988). The strong Allee effect I refer to means that this per capita growth rate must even
become negative a low densities (see Figure 2.3). Only this strong Allee effect permits
extinction of the prey. The second model takes logistic prey growth and a predator-
dependent functional response that has been proposed by Hassell & Rogers (1972) or
Ashby (1976),

dN

dt
= r(1− N

K
)N − aN

1 + athN

1

P
P

dN

dt
= e

aN

1 + athN

1

P
P − µP.

This model is completely donor controlled and can have two non-trivial equilibria (one of
them stable), in which case the origin becomes attractive for all initial conditions with
sufficiently low prey abundance.

2.3.2 Is there a biological control paradox?

The analysis in chapter 5 revealed another interesting feature of ratio-dependent models:
stable coexistence of prey and predator is possible with prey equilibrium values arbitrary
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Figure 2.3: Types of prey per capita growth functions f(N) in the model dN/dt =
f(N)N : (a) the logistic growth, (b) a weak Allee effect, K is the only stable equilib-
rium and (c) a strong Allee effect, K and 0 are stable equilibria. K is the carrying
capacity, N the prey density.

close to 0. This is in contrast to prey-dependent theory where such low prey equilib-
rium values either lead to a destabilization of the system or require very high predator
abundances (Arditi & Berryman, 1991). In reply to Arditi & Berryman (1991), Åström
(1997) pointed out that a nonlinear density dependence in the prey growth function in
the form of θ-logistic growth (in ecology introduced by Gilpin & Ayala 1973, but first
used by Richards 1959),

f(N) = r

(
1−

(
N

K

)θ
)

,

could stabilise predator-prey systems with low prey-equilibria. However, few estimates of
the parameter θ exist. Åström (1997) cites some tentative studies that indicate this value
to be below 1 for insect types of prey and above 1 for mammalian types of prey. Only θ < 1
has the stabilising effect on the prey equilibrium described by Åström. However, a small
θ reduces also the population growth rate at low population levels, which is somewhat in
contrast to features of a typical pest.

Actually, the biological control problem has been addressed earlier by Beddington
et al. (1978). They defined so-called q-values, that are the ratio of the (stable) prey
equilibrium coexisting with the predator divided by the prey equilibrium in absence of
the predator. Small q-values (<0.01) thus indicate a successful biological control of the
prey by its predator. Beddington et al. (1978) reported q-values ranging in the field from
0.002 to 0.03 and in the laboratory from 0.1 to 0.5. They explored several possibilities
how predator-prey or host-parasitoid models could be adapted to accommodate these
observations:

• sigmoidal functional responses had no influence on q,

• inclusion of mutual interference in a DeAngelis-Beddington way (1.8) gave q-values
down to 0.1,

• incorporating spatial aggregation of parasitoids with heterogeneous host distribu-
tions made q-values below 0.1 possible.
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In an earlier paper Free et al. (1977) had shown that spatial aggregation, observed from a
global perspective, leads to reduced attack rates a (like predator interference, see equation
(1.7)), a phenomenon that they termed ‘pseudo-interference’. Beddington et al. (1978)
therefore modelled the last item in the list above with Hassell-Varley’s (1.7) interference
model, based on estimates for the interference parameter m ranging from 0.1 to 0.8, and
they obtained q-values down to 0.004. Using the Hassell-Varley-Holling (1.11) functional
response Arditi & Akçakaya (1990) had shown that the parameterm could even be higher,
thus allowing for very low q-values. As already pointed out, the Hassell-Varley-Holling
model becomes ratio-dependent for m = 1, thus proposing this model as a very rough
description of biological control problems.

Let us identify the region in parameter space of a ratio-dependent model that shows
such low stable prey equilibrium levels. To simplify this analysis we use the dimensionless
form of the ratio-dependent model that was introduced in chapter 4,

dN

dt
= R(1− N

S
)N − SN

P + SN
P

dP

dt
=

SN

P + SN
P −QP,

with R = rh/e, S = αh/e and Q = hµ/e. S is the equilibrium value of the prey in the
absence of a predator. We therefore want to identify all parameter combinations that give
a low and stable prey equilibrium N�,

N� < εS.

Some algebra shows that this is possible for all S that fulfil

(1− ε)
R

1−Q
< S < min

{
R

1−Q
,
Q−Q2 +R

1−Q2

}

Figure 2.4 illustrates the region in parameter space that fulfils this condition. Approxi-
matively, we therefore need that S ≈ R

1−Q
, which means in the original parameters

α ≈ er

e− hµ
.

This condition can be verified with real data. Bernstein (1985) studied the predator-prey
system Tetranychus urticae (prey) with Phytoseiulus persimilis (predator) and parameter-
ized a predator-prey system with each population structured in three life stages. We can
use his estimates to parameterize the ratio-dependent model (in parentheses is the name
of the parameter used in the original publication): r = 5.34d−1 (r1), µ = 0.0433d−1 (γ2),
e = 0.159 (min{rm, r2}) (eggs laid per egg eaten) and h ≈ 0.1d−1 (Ki/j or bi/αi). These
values give

α ≈ 5.49
cm2

d
= 0.00055

m2

d
.

This value is close to the α = 0.0002m2/d reported in (Hassell & Comins, 1978) for this
predator-prey system. Of course, this is only a preliminary result, but it is encouraging
that the ratio-dependent model may be useful in biological control.
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(1- )R/(1-Q))

Figure 2.4: The hatched region in the R − S parameter space (for a fixed Q < 1)
indicates the parameter values for which the predator reduces the prey to a stable
equilibrium a fraction ε below the levels the prey would attain in the absence of
predators. The vertical hatching indicates the area where the origin behaves like a
saddle point, while in the area with horizontal hatching the origin is attractive for
certain initial conditions.

It might also be that predator-prey systems in biological control do not show a stable
equilibrium but some metapopulation dynamics with frequent local extinctions. Luck
(1990) reported (based on data from Murdoch et al. (1985)) that “of 9 successful biological
control projects, only 1 showed to have a stable N�, the others could be explained by
local extinction”. Again, such local extinctions are possible with a ratio-dependent model
describing local dynamics. The condition on parameters is similar to the one found above,

S ≈ R

1−Q
or S >

R

1−Q
,

and the types of extinction are illustrated in Figures 5.5 and 5.1c.

2.4 Microbiologists did it

This section summarises the ideas and results of the analysis developed in chapter 6.

In fact, while Arditi & Ginzburg (1989) were the first to propose ratio dependence as
a general concept (with all its implications to bottom-up and top-down concepts), Getz
(1984) published a specific ratio-dependent model several years before them. The very
idea that consumption (and with it growth of an organism) is a function of the ratio
consumer by resource can be found in the microbiological literature already in Cutler &
Crump (1924). Most interestingly, a specific ratio-dependent function of the form (1.10)
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has been proposed in microbiology as a growth function (same concept as the functional
response) by Contois (1959). This function has since then served as an alternative to
the microbiological equivalent of the Holling type II function, Monod’s (1942) well known
growth function. With the help of Science Citation Index I checked all papers citing
Contois’ work in the last 40 years to detect results that might be useful in the ecological
context.

Most experimental work has been done in the framework of chemostats that are usually
described by

dN

dt
= D(N0 −N) − Y µ(N,P )P

dP

dt
= µ(N,P )P −DP (2.4)

with substrate N , inflowing substrate concentration N0, consumer P , dilution rate D and
yield Y . Comparing this equation with our standard predator-prey system (1.4) shows
that there is a subtle difference between the two ways consumption is modelled: microbi-
ologists start with the growth function (called numerical response in population ecology)
and consider the substrate uptake function (our functional response) to be proportional
to it with yield constant Y , while ecologists start with the functional response and con-
sider the numerical response to be proportional to it with ecological efficiency e. There is
therefore a scaling difference between the two concepts,

g(N,P ) = Y µ(N,P ).

However, this difference is of no importance to the results discussed below.

Growth rate µ(N,P ) is usually modelled with the equation proposed by Monod (1942),

µ(N,P ) = µmax
N

Ks +N

with maximal growth rate µmax and half saturation constant Ks (note that with a = µ/K
and h = 1/µ we obtain the usual Holling type II functional response (1.6)). With this
growth function, system (2.4) predicts that outflowing substrate concentration N� should
only depend on D, µmax and Ks, but not on inflowing substrate concentration N0. How-
ever, it was soon observed that in many experiments outflowing substrate concentration
was proportional to inflowing substrate concentration. Contois (1959) tried to accommo-
date this observation by hypothesising (and providing experimental support) that the half
saturation constant is proportional to inflowing substrate concentration. Combining this
observation with mass balance principles (see chapter 6 for details) he derived the form

µ(N,P ) =
umN

BP +N

(with constants um and B) which is a particular ratio-dependent form.

The papers that tested this function against Monod’s or other functions (see Table 6.1
for examples) can be classified into two categories,
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• chemostat experiments with varying inflowing substrate concentrations and dilution
rates, measuring outflowing substrate concentration,

• direct measurements of growth with varying substrate and organism concentrations,
then comparing these measurements quantitatively and qualitatively with different
growth functions.

The first category showed that Monod’s prediction is correct as long as one works with a
unique strain of organisms growing on pure substrate. Any deviation from these conditions
(mixed substrate or multiple strains/species of organisms) lead to outflowing substrate
concentrations that are proportional to inflowing substrate concentrations. This result can
be interpreted that the consumer isocline in chemostats (Figure 6.2) should be slanted.
The second category showed that the growth function is a decreasing function of consumer
density,

dµ(N,P )

dP
< 0,

under the same conditions mentioned for the first category (mixed substrate or multiple
strains/species of organisms). However, these results are more precise in that they identify
predator dependence in the growth function to be the likely cause of the slanted preda-
tor isocline, and not some density-dependent consumer mortality as proposed by other
researchers. While all these results suggest that we should expect a slanted predator iso-
cline in natural systems, this slanted isocline is also predicted by any consumer-dependent
growth function, not only by Contois’ equation. As in ecology (section 1.2.5), the com-
parison between Monod and Contois is not done on equal footing. Fortunately, there
were also direct quantitative comparisons between data and models, based on statistical
criteria such as goodness-of-fit. These showed that in many cases (wastewater treatment,
fermentation processes) Contois’ function fitted better than Monod’s function, but often
the identification was less clear or other functional forms fitted equally well as Contois’
equation.

We can learn several things from the work done in microbiology:

• Prey-dependent (or substrate-dependent) functions such as the one proposed by
Monod seem to be a good description of consumption processes of single species
consumers on a pure substrate.

• Whenever the system becomes more complex (several species involved, hetero-
geneities in space or time) predator-dependent functions (of any form, not nec-
essarily ratio-dependent) are more adequate.

• If model selection by fitting models to data is already ambiguous with microbiologi-
cal data, then we cannot expect more conclusive results when working with (noisier)
field population dynamics, or we have to develop more sensitive techniques such as
proposed in chapters 7 and 8.
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2.5 Quantitative comparison of models

This section summarises the ideas and results of the analysis developed in chapters 7 and
8.

In the beginning I have opined that existing comparisons between prey-dependent or ratio-
dependent predator-prey models and real data have not been done yet on an equal footing.
The analysis in chapter 4 was already closer to this objective by comparing predictions
of each model with the dynamics observed in freshwater lakes. Here, I will compare the
models (2.1) quantitatively based on their temporal dynamics, by fitting them directly
to time-series data of predator-prey systems. The concept of likelihood (Edwards, 1992)
provides the statistical framework to ensure that the comparison is done on an equal foot-
ing. The idea is to identify the likelihood of the model given the data with the probability
of obtaining the data given the model (with model parameters that maximise this prob-
ability, maximum likelihood). This identification is intuitive (see Press et al. (1992) for
some comments) but very useful for model selection. Estimation by maximum likelihood
(ML) has a number of interesting statistical properties: the estimation is consistent and
ML is the estimator with the smallest possible variance (Huet et al., 1992). However,
the distribution of the error has to be known exactly for these properties to hold. ML
estimation is often not very robust against uncertainty concerning this distribution.

If the models that are compared have the same number of parameters (as is the case
in our candidate models) then the likelihoods also serve as selection criterion. Therefore,
regression of the model to data (with parameter estimates as a byproduct) and model
selection are based on the same criterion. Chapter 7 will show that for applications of
model selection this is an important point.

The concept of likelihood can also be extended to compare models with a different
number of parameters, using so-called information criteria. The best known is Akaike’s
Information Criterion AIC (Akaike, 1973; Bozdogan, 1987), but others exist, such as
Bayesian information criterion BIC, Mallow’s Cp (see Hilborn & Mangel (1997) for a
discussion and references to all three criteria) or consistent Akaike information criterion
CAIC (Jones, 1993). However, since I only worked with models of equal complexity
I mention these criteria only for completeness, they are not pertinent for the present
analysis.

In contrast to the equilibrium experiments in Arditi & Säıah (1992) we approach the
problem of model selection from a dynamic point of view. We investigate whether time-
series data of predator-prey systems can reveal if there is predator dependence in the
functional response or not. The comparison will be done by fitting our equally complex
prey-dependent and ratio-dependent predator-prey models (2.1) to time-series data, and
apply goodness-of-fit (likelihood) as a criterion.

The time-series I use in the analyses come either from the literature (protozoan, arthro-
pod and plankton predator-prey systems) or are original phyto- and zooplankton data
from lake Geneva. They are characterised, as most ecological data, by small size (10 -
50 data triplets {time, prey, predator}) and by rather large errors with coefficients of
variation up to 50%. By such reasons one should be extremely cautious in making any
deduction regarding the biological ‘correctness’ of the used formalism to describe the bi-
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ological processes even if some model fits such data very well. The problem has been
illustrated convincingly for the case of logistic population growth (introduced by Verhulst
(1838)) already very early in the history of mathematical population biology, namely in
1939 by W. Feller. He chose two other mathematical models that are S-shaped and that
have the same number of parameters and showed that both forms fit equally well (or even
better) to real data that where considered at the time to be some of the best proof that
the logistic model has the character of a physical law. Feller continued to show that these
models also predict the same response to a constant per capita harvesting rate as the
logistic model.

More recently, Simons & Lam (1980) demonstrated that the same caution applies to
more complex models such as models describing the dynamics of phosphorous in large
lakes. They pointed out that several choices of the parameter values (with or without
imposed seasonality) gave equally good fits to one season of data, and thus that the
predictive power of such a (fitted) model is very limited.

These two examples amply show that obtaining a good fit of a model to data is far
from proving the biological correctness of the chosen mathematical process description.
Or, in the words of Cale et al. (1989), ‘multiple process configurations can produce the
same pattern’. However, there is a solution, following May’s (1989) advice by ‘generating
pseudo-data for imaginary worlds whose rules are known, and then testing conventional
methods for their efficiency in revealing these known rules’. In other words, I will generate
artificial predator-prey data, apply the model selection criterion to them and then check
if the correct model has been identified. Only after detection of the limits in model
identification in this simulation analysis will I endeavour to analyse real ecological time-
series data. This analysis is summarised in section 2.5.4.

This same approach has been used in Carpenter et al. (1994) for plankton data, but
the authors used a discrete model with the time steps being the (arbitrary) intervals
between measurements. They also fitted time-series over several years, thus assuming
that parameters such as carrying capacity or mortality rates are the same for every year.
I will reanalyze their data by fitting our models to data from one season only, in particular
to data from the period of spring to autumn where population interactions may be the
driving forces behind the dynamics (Sommer et al., 1986), and not physical constraints
such as temperature or light. I will also fit the models to protozoan time-series found in
the literature, because they show much less variability than whole lake plankton data and
there are many similarities between protozoa and plankton (fluid medium, overlapping
generations, large numbers etc.). There are also more and more ecological models that
include the microbial loop (eg. Fasham et al. 1990, Azam et al. 1983, Stone & Berman
1993) based on a large body of empirical evidence for the important ecological role of the
microbial fauna (Berman, 1990; Fenchel, 1988; Sherr & Sherr, 1991). It will be interesting
to see how typical ecological models fit the dynamics of these organisms.

Finally, this work will also be different from the approach presented by Harrison (1995).
The author used a classical predator-prey time-series from the literature (Luckinbill, 1973)
and fitted it to 11 different predator-prey models, trying to determine the key processes
necessary to get a qualitatively and quantitatively good fit. Two problems arise in his
work: (1) he implicitly assumed that a better fit is due to a better description of the
individual processes and (2) without any information about the size of the observation
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error no statistical test could be used in the comparison that accounts for the number of
parameters in the model, e.g. likelihood ratio tests (Hilborn & Mangel, 1997) or Akaike’s
information criterion (AIC, Akaike 1973). I will show that already with modest errors
in the data assumption (1) may be wrong and detailed simulation studies should be
done preliminary to such work. Unsurprisingly, the model with the largest number of
parameters gave the best fit in Harrison’s (1995) analysis. While this kind of study may
yield information about details in processes of specific systems (e.g. importance of lags
between consumption of Paramecium aurelia and reproduction of Didinium nasutum in
this case) it does not tell whether addition of these details gives a significantly better fit
to the data. I will avoid this kind of fallacy by working only with models that have the
same number of parameters.

2.5.1 A remark on model selection criteria

Model selection in this thesis is always based on likelihood (goodness-of-fit), at least
when working with real data. Another approach was chosen by Bilardello et al. (1993),
who used the joint linearised confidence region as a comparison criterion. This region is
minimal if the determinant of J(θ)T · J(θ) is maximal (Hosten, 1974), where J(θ) is the
sensitivity matrix of the state variables with respect to parameter vector θ (J(θ)T ·J(θ) is
also known as Fishers information matrix, Huet et al. 1992). I did not test this criterion,
but it surely would help detecting problems due to overparameterization (which makes
this matrix close to singular). I encountered such problems with the highest noise levels
in the ‘in silico’ analysis (2.5.4). Sometimes there was very slow convergence even close to
the optimum, at other times several different parameter sets gave equally good fits. Both
phenomena indicate that too many parameters were fitted to the data. Another popular
criterion for model selection is the standard deviation of the residuals (Carpenter et al.,
1994).

All these criteria can pose the problem that model selection is based on a quantity
that is not minimised while fitting the model to data. In chapter 7 I analysed some such
criteria that were proposed by Carpenter et al. (1994). I often observed that a model was
selected that gave visually a worse fit to the data than the rejected model (see section
2.5.4). Using only the likelihood concept for both regression and model selection avoids
this problem and is statistically well founded. For this reason I remained in this concept
for the analysis of real data.

2.5.2 The errors that govern our modelling world

I have mentioned in the previous section that my model comparison will be based on a
likelihood approach. To formulate this likelihood I first have to formulate a stochastic
model, i.e., a model that explains how random effects come into the data to which I
want to fit my candidate models. These models themselves are deterministic, formulated
with ordinary differential equations (ODE) that, for given parameters, give completely
predictable results. They form the core of the statistical model to which stochasticities
are added.
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A first type of stochasticity is pure observation or measurement error: there is some
unknown real population abundance and any estimation of it is a realisation of a random
number according to some distribution function. If we have data with only this type
of error (the dynamics of the population are deterministic) then we fit our model by
fitting the whole trajectory (solution of the ODE with given initial conditions that are
treated like parameters to be estimated) to the time-series data (note that we assume the
time measurements to be exact, without any error). This type of fitting is often called
trajectory fitting. See Figure 8.1a for an illustration of this type of fitting.

A second type of stochasticity is process error: the dynamics of a population over time
are not completely governed by its deterministic component but also by random influences
either from the environment or from inside the population. In the context of an ODE-
model process error leads to a stochastic ordinary differential equation (SODE). If our
system has this type of error, then the deterministic model trajectory diverges more and
more from the actual population abundance, the longer the prediction horizon, the worse
the prediction. The population abundance after some fixed time interval with some initial
abundance (which is known if we measure the abundance without observation error) is
thus a realisation of a random process. To relate in this case the problem of parameter
estimation (and of estimating goodness-of-fit) to a regression problem in the classical
sense, we have to make the assumption that the distribution of the population abundance
after the fixed time interval, given the initial conditions, is known. Usually, the prediction
horizon is one time step ahead (defined by the spacing in the available time-series), but
it is also possible to predict s > 1 time steps ahead. This type of fitting is therefore often
called s-step-ahead fitting. See Figure 8.1b for an illustration of this type of fitting.

Solow (1995) distinguishes a third type of error, so-called parameter error. This is a
special kind of process error due to the stochastic nature of one (or several) of the model
parameters. Solow shows that this type of error can lead to non-stationary error, depend-
ing on the probability density function and the algebraic embedding of this parameter. In
my fitting I did not see a way to distinguish between parameter error and process error
as modelled by a SODE. Furthermore, the algebraic structure of equations (2.1) makes it
difficult to deduce how parameter error translates itself into process error, an information
necessary to adapt the regression process. I therefore only considered process error in
form of a SODE, according to the standard treatment of errors in time-series (Hilborn &
Mangel, 1997; Pascual & Kareiva, 1996; Dennis et al., 1995).

Statistical theory has mainly developed methods to fit one single type of error, the
problem of considering process and observation error at the same time being much more
difficult (discussion in section 3.2.4). If the researcher can design his experimental setup so
that one of the errors is eliminated or at least reduced to negligible values (e.g., providing
constant environmental conditions in the laboratory and working with population sizes
where demographic stochasticity is unimportant, or, developing a sampling method that
has no observation error), then the formulation of the stochastic model poses no problem.
However, this is difficult to achieve, especially when working in the field. Most time-
series data available in the literature or by a researchers own experiment contain both
types of errors. Pascual & Kareiva (1996) thus come to the conclusion that the researcher
has to decide (as a best guess) which error to model and which error to neglect. Due
to its pertinence I will often use their terminology, calling the case of trajectory fitting
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‘observation error fit’ and the case of s-step-ahead fitting ‘process error fit’.

The particular choice of one error type or the other can profoundly influence the
result of a model selection process. However, the sensitivity of model selection to the
particular error type can be tested in a simulation analysis, as proposed by May (1989).
This will be the subject of the next section. We discuss and analyse there also two error
functions proposed by Clutton-Brock (1967) and applied by Carpenter et al. (1994) that
seem to take both types of error into account without increasing the numerical costs too
much. However, these error functions do not fit into the likelihood concept, posing the
problem of what criterion to use for model selection. The next section will illustrate some
consequences of this problem. Another statistical method that takes both errors into
account is the errors-in-variables approach that will be discussed briefly in section 3.2.4.
I have not used this method because the computing cost is much higher, the method
itself is still in its statistical infancy or at best adolescence and the method requires
independent knowledge of either process error or observation error. However, the method
fits completely into the likelihood concept and looks promising for future research.

Note that I assume for observation error fit and for process error fit stationarity and
normality of the error on log scale (constant coefficient of variation CV ). With this
assumption maximum likelihood becomes equivalent to ordinary least squares (Press et al.,
1992), and when I will use the terms goodness-of-fit or likelihood the reader best thinks
of them in terms of least squares. However, the size of this error (CV ) is for the real
ecological times series only approximatively known. Furthermore, as already mentioned,
these time-series contain both types of stochasticity and neglecting one of them is only a
statistical necessity. This means that the calculated likelihoods will not have an absolute
meaning and the information criteria mentioned earlier cannot be used. For this reason,
the comparison can only be performed for models of the same complexity.

2.5.3 Implementation of fitting algorithms

Before discussing the actual fitting results I should say some words on the implementation
of the fitting algorithms. Most algorithms were first developed in Mathematica c© to get
an idea if they work satisfyingly. However, numerical calculations in Mathematica are too
slow for the analysis of large numbers of time-series. There does not exist much customis-
able software that allows fitting differential equations to data. Fitting and visualisation
are usually separate steps in most software, which further slows down the fitting process.
Therefore I implemented all algorithms in C++, using the MacIntosh Toolbox functions
to visualise the fitted model in real time. This immediate visual control proved to be
an indispensable tool to analyse large numbers of data sets. The numerical algorithms
are based on the codes provided with ‘Numerical Recipes in C’ (Press et al., 1992). The
software is obtainable on request from the author (it requires a Power Macintosh).

2.5.4 An ‘in silico’ approach to model selection

The objective of the analysis detailed in chapter 7 is to explore numerically how the pres-
ence of both observation and process error in time-series data influences model selection
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based on goodness-of-fit. For this I created artificial time-series that contain both errors.
The deterministic core function is inspired by the dynamics described in the PEG-Model
(section 2.2), i.e., dynamics that reach a stable equilibrium after one or two large ampli-
tude oscillations. In a first step I computed parameters and initial conditions for both the
prey-dependent and the ratio-dependent candidate model (2.1) in a random procedure.
The criteria to accept such a random parameter set are on the one hand the dynamics
described above and on the other hand practical requirements such as prey and predator
equilibria not differing by more than a factor of 100 and predator dynamics showing at
least a five-fold variation. For each model 20 such parameter sets were created. In anal-
ogy to replicated experiments in ecology I then simulated 5 replicate time-series with each
parameter set, adding process error in the framework of stochastic ordinary differential
equations, ‘sampling’ the resulting time-series at 20 equal intervals (also inspired from the
PEG-model, 20 is the typical number of plankton samples over one season) and adding an
observation error to these. The process error is generated in a standard stochastic process
framework (see details in section 7.3.1) with a stochastic component that is proportional
to the current population abundance, thus simulating a multiplicative or lognormal er-
ror type. Observation error is of a lognormal type with constant coefficient of variation.
Time-series with a low observation and process error (comparable to laboratory proto-
zoan systems) and high observation and process error (comparable to aquatic mesocosms,
maybe even to whole lakes) were thus created for each model.

Then each candidate model was fitted to each time-series with four methods (or er-
ror functions). Method A assumes that there is only observation error of a lognormal
type, observation error fitting or trajectory fitting. In this setup maximum likelihood
corresponds to least-squares fitting on the log-scale. Method B assumes that there is
only process error of a lognormal type, process error fitting or s-step-ahead fitting. In
this setup maximum likelihood corresponds to conditional least squares on the log-scale.
The prediction horizon s is chosen such that the autocorrelation drops below 0.5 (Ellner
& Turchin, 1995). The reason for this is to fit over a time interval where nonlineari-
ties may be equally (or more important) as linear dependencies. Actually, this criterion
for the prediction horizon is adopted from Ellner & Turchin (1995) and justified there
mainly as an empirical result from experience. Methods C and D are both inspired from
Clutton-Brock (1967) as presented by Carpenter et al. (1994). C corresponds to weighted
conditional least squares, where the weights are computed from the sensitivity of the
prediction to the initial condition, which is the observation s steps previously and that
contains an observation error (see section 7.3.2 for details). The observation error is as-
sumed to be known independently from process error. D is based on C but is more similar
to a negative log likelihood function in that the scaling factor of the normal distribution
has been retained (see Carpenter et al. 1994) such that larger weights not only reduce the
importance of the residuals but also add a penalising factor to the error function. Note
that these so-called loss functions C and D (Carpenter et al., 1994) do not fit into the
likelihood concept. Model selection must therefore be based on a different criterion. I
chose the sum of squared residuals (computed on log-scale) as this selection criterion.

Time-series with low observation and process error were reliably identified (with less
than 5% wrong identifications) by methods A, B and D. Method C had close to 15%
wrong identifications and was therefore rejected as a useful method for model selection
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(see Figure 7.3).

Time-series with high error levels were best identified by A (observation error fit) with
less than 5% wrong identifications. B and D had both ≈ 10% wrong identifications, but
B was better in the sense that if we require a minimal difference of 5% between the fits
then this method identified more than 95% of the time-series correctly (Figure 7.3). No
such threshold could be found for D.

The problems withC andD are two-fold. First, the algorithms often rather maximised
dependence on initial conditions (larger weights) than minimised the residuals. Second,
the model selection criterion often increased while minimising the loss function, and its
value at the minimum of the loss function could be arbitrarily far away from its own
minimum. Figure 2.5 illustrates these problems for one data set. I therefore concluded
that both methods C and D are unusable for model selection.

200 400 600 800

5

10

15

20

25

200 400 600 800

50

100

150

Figure 2.5: Illustration of the problems encountered with regression method C.
The figures show in phase space (N : prey, P : predator, IsoN : prey isocline, IsoP :
predator isocline) how the prey-dependent model has been fitted by method B (a,
process error fit) and by method C (b, weighted conditional least squares) to an
artificial stochastic time-series (created with a prey-dependent model). Method
C actually maximised dependence on initial conditions instead of minimising the
residuals, resulting in an obviously wrong fit. Similar problems were encountered
with method D. Note that the predator axes have different scales in (a) and (b).

A more interesting result is that only in 1% of all analysed time-series did methods A
and B both identify the wrong model. The most reliable model identification is therefore
to apply several methods based on different assumptions about errors and only accept
results where all methods identified the same model.

A side result from this analysis is the quality of parameters estimated by fitting ODE’s
to time-series data. I computed for each fit of a model to a time-series (that was created
by the same model) the ratio of the estimated parameter by the original parameter (that
created the time-series). The cumulative distributions of these ratios, after fitting to the
time-series with high error levels, are shown in Figure 2.6. If these cumulative distribution
curves pass through the point (1.0, 0.5) then the expected median is correct. The steeper
these curves, the less the estimates are spread. We see that only parameters r and K are
reliably identified in both models, all other parameters are widely spread and the median
is often far away from 1 (where it should be). All tested error functions with this error
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level performed equally well (or bad).
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Figure 2.6: Analysis of the quality of each parameter estimate after fitting the time-
series with high error levels: cumulative distributions of the ratios θe/θc (θe is the
estimated parameter, θc the correct parameter that created the data) for all error
functions. — — —: observation error fitting A; ———: process error fitting B;
– – – –: weighted process error fitting (method D, see text).

The quality of the total parameter set (per model per time-series) can be visualised
in a similar way by working with the dominant eigenvalues (local stability) at the non-
trivial equilibrium point. These eigenvalues have been computed algebraically to avoid
any numerical roundoff errors. Now there emerge strong differences between the error
functions. Figure 7.5 shows the cumulative distribution functions of the ratios of the
dominant eigenvalues for all estimated parameter sets, error functions and models. The
steepness of each curve is approximately the same, therefore each error function shows
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the same variation in the estimation of local stability, although there seems to be a
slightly smaller variation with ratio-dependent data. With respect to the second criterion,
deviation from the expected median, we see that observation error fitA performed globally
best, followed by weighted process error fitting D. Method B, process error fitting, always
overestimated stability.

Conclusions from the ‘in silico’ approach

The result that should be retained from this analysis is that model identification is in
principle possible with both studied error levels and for the time-series analysed (dynamics
reaching an equilibrium after one or two oscillations, starting from low initial conditions
and sampled at 20 times). Observation error fit is slightly more reliable than process
error fit, but the best identification is obtained by fitting with both error functions and
only accepting model selections where both types identify the same model. The estimated
parameters are generally of poor quality and should be used with much care. The method
of fitting ordinary differential equations is therefore better suited for model selection than
for parameter estimation.

2.5.5 The ‘in vivo’ data analysis

As found in the previous section, model selection is most reliable when several goodness-
of-fit criteria, based on different error models, select the same model. The two best known
error functions lead to observation error fit and process error fit. In consequence, I will
only analyse real time-series that permit both types of fitting. This is particularly restric-
tive for observation error fit, because the longer the time-series, the less likely it is to get
a reasonable fit of the whole trajectory. Of course, one could split up long time-series into
shorter pieces and fit trajectories to all pieces, but there is no standard statistical method
how this should be done correctly. To avoid any ambiguity linked to non-standard sta-
tistical methods I therefore only used time-series that can be fitted reasonably to whole
trajectories. These time-series range from simple protozoan batch cultures (Gause, 1935;
Gause et al., 1936; Luckinbill, 1973; Veilleux, 1979; Flynn & Davidson, 1993; Wilhelm,
1993), over spatially more complex laboratory predator-prey systems (Huffaker, 1958;
Huffaker et al., 1963) to the very complex plankton systems of freshwater lakes of the
temperate zone (Carpenter et al., 1994; CIPEL, 1995). The plankton data from Carpen-
ter et al. (1994) consist of edible phytoplankton and herbivorous zooplankton observed in
two North American lakes from 1984 to 1990 (Paul Lake and Tuesday Lake). Edible phy-
toplankton was defined by the authors to be all phytoplankton with a biovolume less than
that of a 30-µm diameter sphere. In the original data from Lake Geneva there were both
edible phytoplankton (defined as organisms with length < 50µm and biovolume below
104 µm3) and total phytoplankton, I therefore fitted two systems: edible phytoplankton -
herbivorous zooplankton, and total phytoplankton - herbivorous zooplankton.

What are the differences between these real data and the artificial data analysed in the
previous section? The multiplicative nature of observation (and probably also process)
error has been confirmed for all systems. However, the normality assumption (for the log-
transformed data) might be too strong, outliers (stronger tails, data points farther away
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from the mean than expected) are possible in arthropod and in plankton data. I therefore
also fitted the data with an error function based on the sum of the absolute values of the
residuals in log scale (Laplacian or double exponential distribution). Another difference
is the noise levels in the data that might be higher (especially with phytoplankton) than
the analysed noise levels. In this case, the 5% difference between the error functions
after fitting both candidate systems (2.1) that was computed in the previous section
as assuring a 95% confidence in the model selection might not be enough. I therefore
also performed a residual bootstrapping (as described by Efron & Tibshirani (1993), see
details in section 8.A) to compute a confidence interval for the error with each model
and applying a standard t-test to see if one of the models fits significantly better (with
α = 0.05). The same algorithm also yields an ‘improved estimate of prediction error’
(IEPE, Efron & Tibshirani 1993) of the fitted model that can be tested for significance
between both models. A final difference is that with real data we do not know the process
that created the data, that is, both candidate model might be completely wrong. To
cope with this problem I only considered fits with a likelihood above a threshold level
that was estimated from the likelihoods obtained by fitting to the artificial data. In sum,
for each type of fitting (process error fit and observation error fit) four selection criteria
were applied, and a model selection was only considered significant if all criteria (with
sufficiently high likelihoods) with both error functions yielded the same result.

The most significant selection results are obtained with the protozoan data. Most
systems are either closer to prey dependence or the samples are too small to detect preda-
tor dependence reliably. However, there is one predator-prey system with four datasets
(Flynn & Davidson, 1993) that shows significant predator dependence. The predators in
this system can show strong cannibalism at low prey-densities (personal communication
with the authors). Although such cannibalism was not observed in the analysed data
this suggests that the predators are capable of strong interference when they encounter
each other. It is also possible that heterogeneities developed in the periods between the
stirrings (every 12 h). Both factors might explain the highly significant support for the
ratio-dependent model. To our knowledge this is the first example of a protozoan sys-
tem with monospecific prey and predator that shows this strong predator dependence
(compare to chapter 6). This exception illustrates that a modeller has to know the biol-
ogy of the system to be modelled, and that traits like potential cannibalism can indicate
that a model with predator dependence is more appropriate. See section 8.5 for further
comments and relations to other experiments.

There also seems to be no predator dependence in Huffaker’s arthropod data. In most
cases the prey-dependent model fits better, and in both cases with process error fit where
the ratio-dependent model fits better this fit is qualitatively wrong. Two other aspects
are important for the fits to these data: 1) quantitatively the models fit rather badly
to the data, the experimental systems showing larger variation than can be reproduced
by our simple models and 2) trajectory fitting gives qualitatively correct fits with both
models. The first point might be explained by Huffaker’s experimental setup, food for
prey being dispersed in a 2- or 3-dimensional structure and the prey colonising this food
in a fairly heterogeneous manner. Such a laboratory system is structurally more complex
than the protozoan batch cultures of the previous paragraph. The second point indicates
that the models used can nevertheless be used for qualitative analysis, only quantitative
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conclusions should be interpreted with care.

The fits to phyto- and zooplankton data are the most difficult to interpret. The easiest
conclusion would be that either the data are too noisy for this kind of model identification
or that both models are too simple for lake dynamics. The first point is supported by
the qualitative nature of the process error fit regressions (mostly stable or strongly stable
systems) that might mean that the best prediction is not obtained by dynamic nonlinear
modelling but rather by simply using some mean value of the data as a predictor. The
second point is probably true for observation error fit, but not necessarily for process
error fit. Despite these drawbacks, many significant model identifications are obtained
with observation error fit, showing that there are long term dynamic patterns. These
significant fits are of both types, prey- and ratio-dependent, with trends for some lakes
and for modelling edible phytoplankton only or total phytoplankton. However, these
trends are not sufficiently convincing to give any recommendations when which model
might be more appropriate. Brett & Goldman (1997) argued that phytoplankton displays
strong bottom-up influence while zooplankton is more sensitive to top-down control. The
phytoplankton-zooplankton interaction itself (that is studied in this thesis) is subject to
both forces, which might also explain the ambiguity in model identification.

Conclusions from the ‘in vivo’ analysis

Systems with monospecific prey and monospecific predator in a homogeneous environ-
ment generally show little predator dependence and are better modelled with the prey-
dependent model. However, I found at least one system where the ratio-dependent model
fits better than the prey-dependent model for all available time-series. Therefore, be-
fore modelling such systems with a prey-dependent model, one should check whether
there are any biological traits that indicate strong predator dependence (e.g. potential
cannibalism). With lakes no conclusion in favour of one of the models can be drawn.
Whenever making predictions with models, such predictions should be cross-checked by
using another model. Prey dependence and ratio dependence offer promising frameworks
to develop such alternative models and detect ‘robust’ predictions (robust in the sense
that they are independent of predator dependence) and direct further research if no clear
prediction is possible (e.g., to study how much predator dependence actually occurs in a
system or to parameterize an intermediate model).

De Mazancourt et al. (1998) and Zheng et al. (1997) are examples of studies that have
chosen this pluralistic modeling approach, both using on the one side a Lotka-Volterra
functional response (as an example of top-down control) and on the other side a linear
ratio-dependent functional response (to represent donor control). The first study checked
the robustness of some theoretical predictions, while the second study contrasted these
predictions to guide further research and the interpretation of field results.



Chapter 3

Concluding remarks and
perspectives

3.1 General conclusions

The present thesis can be interpreted as a general validation of a ratio-dependent predator-
prey model. The mathematical properties of this model are thoroughly analysed, showing
that global dynamics are stable coexistence of prey and predator, unstable coexistence
(limit cycles), extinction of the predator only or extinction of both prey and predator. For
certain parameter values there are two basins of attraction, one for the origin (extinction)
and one for stable or unstable coexistence. This naturally explains experimental results
where coexistence or extinction were function of the initial population levels. The model
is shown to describe qualitatively correctly predator-prey systems in freshwater plankton,
protozoan batch and continuous cultures and laboratory arthropod systems.

In a next step the ratio-dependent model is compared to an equally complex prey-
dependent model, both qualitatively and quantitatively. The qualitative comparison
demonstrates that both models produce very similar dynamic patterns. The major dif-
ference lies in the reaction to enrichment, which is destabilizing and increasing only the
predator equilibrium in the prey-dependent model, neutral with respect to stability and
increasing both prey and predator equilibrium in the ratio-dependent model. The com-
parison of both models to the PEG-model (that summarises observed plankton dynamics
in freshwater lakes of the temperate zone and of different trophic states) shows that they
both can explain these dynamics if seasonality is added to one or more parameters. The
ratio-dependent model seems to explain the changes that occur in the dynamics with
enrichment slightly better than the prey-dependent model.

To compare the models quantitatively to predator-prey time-series I found the like-
lihood concept to be a firm statistical framework. Protozoan data are generally better
described by the prey-dependent model. However, there is also one protozoan system
where the ratio-dependent model describes the dynamics more accurately. The analysed
arthropod data correspond better to the prey-dependent model. For the phytoplankton-
zooplankton interaction both models are valid and none of them better than the other.
Consequently, predictions for freshwater plankton systems should be based on both mod-
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els to avoid falling victim to mathematical artifacts of one of them (such as the paradox
of enrichment).

There exist for both the prey-dependent and the ratio-dependent model equivalent
forms in microbiology (Monod’s and Contois’ model). Microbiologists have also done
the kind of quantitative and qualitative comparison that is applied in this thesis. Re-
viewing their results I found that Monod’s model seems correct with monospecific prey
and monospecific predators in a homogeneous environment. However, every deviation
from these conditions induces predator dependence in the growth function (numerical
response), such that often Contois’ model describes the observed dynamics better than
Monod’s model. The main field of application of Contois’ model is in plurispecific and
heterogeneous systems such as fermentation processes and waste water treatment.

In conclusion, the prey-dependent model seems most appropriate in cases of monospe-
cific prey and monospecific predators in homogeneous environments. In all other cases
any degree of predator dependence in the functional response can be observed and the
best suited model is a priori unknown. Prey-dependent and ratio-dependent models can
be interpreted as two extrema with respect to predator dependence. Using both helps
detecting predictions that are sensitive to predator dependence and direct further research
if necessary.

3.2 Perspectives for continuation of work

In the following I will list some possible lines of research that could further enhance the
work presented in this thesis.

3.2.1 A non-parametric approach

The technique used for model selection in chapters 7 and 8 requires to parameterize the
whole predator-prey model, in particular also the prey growth function and the predator
mortality function which are of no interest to the detection of predator dependence in
the functional response. Even worse, inaccuracies in the chosen formulations (logistic
growth and constant predator mortality rate in the case of this thesis) could influence the
detection of predator dependence. Another possible problem is the absence of delayed
effects in the predator-prey model. A delay in the numerical response with respect to
the functional response is theoretically plausible and has improved the goodness-of-fit in
Harrison’s (1995) reanalysis of Luckinbill’s (1973) protozoan data and in the bacteria-
bacteriophage system of Bohannan & Lenski (1997).

An elegant solution for both problems has been outlined by Ellner et al. (1997). The
authors study the system

dx(t)

dt
= f(x(t− τ )) + g(x(t)).

Based on a time-series approach they develop a method to estimate the delay parameter τ
and to reconstruct f and g non-parametrically. Tested with artificial time-series, adding
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both observation and process error with CV = 0.1, they find that a correct estimation of τ
is possible for time-series as short as 100 data points. The non-parametric reconstruction
of f and g looks fairly well and the authors point out that their method can reveal
information about the biology of f and g.

This is exactly what could be done to identify the functional response. Estimating
the delay in the numerical response (as a byproduct) and reconstructing the functional
response non-parametrically with confidence intervals on all involved variables one could
now fit the functional response directly to the reconstructed data (also using errors-in-
variables techniques) and identify empirically the most parsimonious model to describe
it. Protozoan systems such as studied in Veilleux (1979) could provide the data necessary
for such an analysis.

3.2.2 Paying more attention to deterministic extinction

The quasi extinction risk of a natural population is usually estimated by parametris-
ing a model of the population (e.g., with a Leslie model, Leslie 1948), doing stochastic
simulations and measuring the proportion of simulations during which the population
abundance fell below a predefined threshold value. One of the reasons for this approach
is that typical population models do not allow for deterministic extinction. Working
also with models that include this feature (such as general ratio-dependent food webs or
food webs extended from the ideas in the predator-prey models of section 2.3.1) could
provide additional information on the risks of endangered populations. Extinction as a
deterministic outcome has not been considered at all in the ecological literature.

3.2.3 Modelling plankton data more realistically

I analysed the plankton data from Lake Geneva only in the predator-prey context with
constant exogenous factors (in form of model parameters). Actually, there are much more
data available: plankton abundances for each species, temperature at several depths of
the Lake, nitrogen and phosphorous content in the water. Using these external variables
as model input a much better prediction of total phyto- and zooplankton abundances
one or two weeks ahead might be possible. However, while adding inputs will always
increase goodness-of-fit, this also increases model complexity (with all its inconveniences:
more parameters need being estimated, it becomes more difficult to transfer the model
to another ecosystem, etc.) and the predictions may not become significantly better by
adding these inputs (likelihood ratio tests, information criteria). The identification of
the most important driving external variables is an old problem in ecology. The usual
statistical approach uses prinicpal component analyses. However, PCA only detects linear
dependencies, nonlinearities are only detected as noise. Empirical fitting methods such
as neural networks also detect nonlinear patterns (Lek et al., 1996). By splitting the
data set in two (in-sample and out-of-sample) one can teach the neural network on the
in-sample data and test its predictive power on the out-of-sample data. This procedure
can be combined with bootstrap techniques. Such methods could detect the two, three
or four most important external variables also with respect to nonlinear dependencies.
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These variables could then be used to develop a simple explicit dynamic model to predict
the variables of interest, e.g., total phyto- and zooplankton.

3.2.4 How to treat process and observation error together?

The statistical methods I used in this thesis all make the assumption that there is only
one type of error in the data, observation error or process error. This is in contrast to
the data which always contain both types of stochasticities. Statisticians have developed
several strategies how to cope with this problem. In this section I will discuss three
possible strategies. All of them are computationally more intensive than the techniques
I used, but with the next generation of personal computers the actual computing time
might decrease to acceptable values.

Hilborn & Walters (1992) propose to fit the models by assuming that all errors are
of one type only (e.g. observation error) and to assess a possible bias by stochastic
simulation. In the context of continuous models this means fitting data produced by a
stochastic ordinary differential equation (SODE) to a deterministic ordinary differential
equation (ODE). This approach may be well suited for parameter estimation if there is
no doubt about the model structure. However, we do no not know whether the expected
trajectory of a SODE maintains the structure of the underlying ODE (which is important
for a correct model selection). This is the case for single population exponential growth
(Yodzis, 1989) and single population logistic growth (Nisbet & Gurney, 1982; Braumann,
1983), but these results rely on the existence of an analytic solution of the ODE and
I am not aware of any such work for more complex systems. Some preliminary studies
show that there may be a difference between expectation and the deterministic model: I
simulated SODE’s by adding white noise with a standard deviation proportional to the
actual population size (thus simulating the characteristics of a lognormal process error, see
also the artificial data creation in chapter 7), computed a large number of replicates and
calculated from them the mean population dynamics (Figure 3.1, dotted curves). Fitting
the deterministic model (whole trajectory) to these expectations showed that often the
trajectories could not be approximated by the deterministicODE, and model identification
became very difficult. Figure 3.1 shows moderate examples of these deviations from
deterministic behaviour, together with the best fit obtainable to the deterministic model
that was used as the core of the SODE and the deterministic trajectory with the original
parameters. These two examples illustrate that the structure of the expectation of a
SODE can be different from the one of its deterministic core function. Further numerical
work would be needed to elaborate how stochastic noise can change the actual structure
of a SODE.

Errors-in-variables (having uncertainty in both the dependent and the independent
variable) offers another approach how time-series could be fitted to models. The idea is
to estimate not only the parameters, but also the actual values of the state variables for
each measurement (the so-called nuisance parameters). This can be done in a likelihood
framework, but requires independent knowledge of one of the errors. In their milestone
paper Reilly & Patino-Leal (1981) describe such estimation techniques for models that
are linear or nonlinear in the parameters. They propose nested iterations to estimate
alternatingly parameters and state variables. Schnute (1994) and Schnute & Richards
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Figure 3.1: Two examples illustrating the problem that expectations of SODE’s
can have a different structure than the deterministic core function of the SODE.
Diamonds and stars are prey and predator data (respectively) of the series of ex-
pectations (obtained by Monte Carlo simulation), the continuous line is the deter-
ministic trajectory with the original parameters and the dashed line shows the best
fit of the deterministic model to the expected trajectory. (a) is an example for the
prey-dependent model where the expectation strongly deviates from the original
trajectory while it can still be fitted reasonably to the deterministic core model. (b)
shows an example for the ratio-dependent model where the expectation is closer to
the original trajectory but it cannot be fitted to the deterministic model.

(1995) discuss the errors-in-variables technique in the context of fisheries management.
In other branches of ecology the method does not seem to be used actively.

Yet another set of approaches are simulation-based regression techniques (Ellner &
Turchin, 1995; Gouriéroux & Monfort, 1996). The idea is to use the stochastic model to
simulate a reference data set which is then used to estimate the discrepancy between the
real data and this reference data set (inspired from reconstruction techniques used in chaos
theory, see Kantz & Schreiber 1997 for a very readable introduction). The parameters in
the stochastic model are chosen such that the discrepancy becomes minimal. As in the
errors-in-variables method this technique requires independent knowledge of one of the
errors. Little is known about the reliability of parameter estimation and model selection
when applying this method to typical ecological time-series.
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Abstract

The verbal PEG-model (that describes the plankton dynamics of freshwater lakes of the
temperate zone) is interpreted in the context of dynamic predator-prey (phytoplankton-
zooplankton) interactions. We then compare two explicit predator-prey models qualita-
tively with these dynamics. One model represents the ideas of top-down control while the
other model includes also ideas of bottom-up control. It is shown that neither model can
explain the dyamics of the PEG-model satisfyingly, but that the second model (bottom-
up) has more in common with the observed dynamics than the first model (top-down).
We then study some extensions of both models (seasonality of parameters or additional
interacting trophic levels) and show that both extended models can predict the PEG-
model dynamics satisfyingly. We conclude that the PEG-model dynamics have, on the
whole, more in common with the model containing bottom-up control, but that we have
to add a trophic level to the predator-prey framework (either as a seasonally changing
parameter or as an additional state variable) to obtain qualitatively satisfying dynamics.

Nous interprétons le modèle (verbal) “PEG”, qui décrit la dynamique du plancton
des lacs d’eau douce de la zone tempérée, dans le cadre d’interactions dynamiques proie-
prédateur (phytoplancton-zooplancton). Nous comparons ensuite qualitativement cette
dynamique avec deux modèles explicites de systèmes proie-prédateur. L’un d’entre eux
est fondé sur une idée de contrôle “descendant” des abondances au sein des niveaux
trophiques, tandis que le second inclut également une régulation “ascendante” des ef-
fectifs. Nous montrons qu’aucun des deux modèles ne peut rendre compte de façon
satisfaisante de la dynamique décrite par le modèle PEG, mais que le second modèle
(avec régulation ascendante) présente plus de points communs avec elle que le premier
(avec contrôle descendant). Nous étudions ensuite un certain nombre d’extensions des
deux modèles (modifications saisonnières des valeurs des paramètres ou niveau trophiques
supplémentaires), et nous montrons que les deux modèles ainsi étendus peuvent prédire
la dynamique du modèle PEG de façon satisfaisante. Nous concluons que la dynamique
décrite par le modèle PEG a, dans l’ensemble, plus de points communs avec le modèle
incluant une régulation ascendante, mais qu’il est nécessaire de prendre en compte un
niveau trophique supplémentaire par rapport au cadre proie-prédateur (soit sous forme
d’un paramètre dont la valeur change de manière saisonnière, soit sous la forme d’une
variable d’état supplémentaire) afin d’obtenir une dynamique satisfaisante du point de
vue qualitatif.
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4.1 Introduction

It is becoming increasingly accepted that ecological processes in lakes are largely de-
termined by trophic interactions (e.g., reviews in Carpenter 1988; Carpenter & Kitchell
1994). Therefore, plankton populations in lakes (or in simpler experimental systems)
have become ideal systems for testing the hypotheses and predictions of predator-prey or
food web theories (e.g., McCauley & Murdoch (1987), Sarnelle (1992), Mittelbach et al.
(1988)). Arditi & Ginzburg (1989) have suggested that the functional response might
often be approximated by a function of the prey-to-predator ratio instead of just the
prey density (prey dependence) as in classical predator-prey theory (e.g., Rosenzweig &
MacArthur (1963)). In the ensuing debate, many arguments have centered on the ability
of alternative models to explain observed patterns in the equilibrium abundances (or long-
term averages) of the various trophic levels in lakes of different productivities (Arditi et al.,
1991a; Gatto, 1993; Sarnelle, 1994; Abrams & Roth, 1994; Mazumder, 1994; Akçakaya
et al., 1995; Lundberg & Fryxell, 1995; McCarthy et al., 1995) or in ad-hoc experimental
setups (Arditi et al., 1991b; Arditi & Säıah, 1992; Ruxton et al., 1992; Holmgren et al.,
1996). Properties of systems out of equilibrium have been much less studied. Particu-
larly noteworthy is the work of Carpenter & Kitchell (1994) and Carpenter et al. (1994).
Using artificial data as well as plankton time series from two lakes over seven years, these
authors have shown that modest observation errors make it impossible to identify reliably
the underlying model. Here, we take a different approach to the study of dynamic prop-
erties of alternative predator-prey models. Rather than trying to fit models to noisy data,
we will examine the ability of the models to generate, in a qualitative way, a standard
non-equilibrium pattern of lakes: the clear water phase that occurs in the spring in lakes
of the temperate region. This pattern is commonly thought to be caused by predator-prey
interactions.

4.1.1 Seasonality of plankton in lakes

In the last decades, limnologists have come to consider that the sequence of planktonic
events in lakes of the temperate zone exhibits a regular pattern that can be predicted to a
certain extent. The current knowledge about plankton seasonality is summarized in a set
of statements by the Plankton Ecology Group (the so-called PEG-model, Sommer et al.
1986). Three distinct periods can be distinguished during the growing season according to
changes in the phytoplankton biomass: (1) the spring peak, (2) the depression of biomass
(known as the clear water phase), and (3) the summer peak (see Figure 4.1a). This
pattern is more pronounced in meso- and eutrophic lakes than in oligotrophic ones.

The increase of phytoplankton biomass in the spring is caused by a fast growth of algal
populations due to a high concentration of nutrients and increasing light (Sommer et al.,
1986). The collapse of the phytoplankton bloom in the spring and the induction of the
clear water phase is interpreted as being caused by overgrazing of the phytoplankton by
the zooplankton (Lampert, 1985; Lampert et al., 1986; Sommer et al., 1986). However,
nutrient limitation and subsequent sedimentation of algal cells were found to be the most
important factors of the phytoplankton collapse after the spring phytoplankton bloom in
several lakes: Lake Geneva, France-Switzerland (Gawler et al., 1988), Lake Constance,
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Figure 4.1: (a) Plankton dynamics as proposed by the PEG-model and (b) criteria
for the plankton dynamics of a model.

Germany-Switzerland-Austria (Weisse et al., 1990), Lake Søbyg̊ard, Denmark (Jeppesen
et al., 1990) and the Řı́mov Reservoir, Czech Republic (Vyhnálek et al., 1991). In ad-
dition, a lysis of algal cells can play a significant role during this period, according to
observations from the Řı́mov Reservoir (Vyhnálek et al., 1993). In those cases in which
the clear water phase is induced by nutrient limitation, zooplankton grazing still plays a
role in maintaining the biomass of phytoplankton at a low level. Nutrient concentration
increases due to the fast turnover through the zooplankton (Fott et al., 1980; Sommer
et al., 1986). Food limitation and fish predation cause a decrease of zooplankton. There-
fore, conditions become favorable for a second bloom of phytoplankton, followed by an
increase of zooplankton in the summer. Finally, reduced light availability results in a
decline of phytoplankton followed by a decline of herbivores towards winter.

These quantitative variations are accompanied by a qualitative succession in the na-
ture of species. The spring peak of phytoplankton is formed mostly by small fast-growing
algae easily edible by herbivorous zooplankton. This is dominated by large species (es-
pecially Cladocera). During the clear water phase, large, colonial, inedible, and toxic
phytoplankton species are favored because of their resistance against herbivore grazing
(Porter, 1977). These species (especially cyanobacteria) become dominant and form the
summer peak of phytoplankton biomass. Large herbivores are replaced by smaller species,
less vulnerable to predation, and less affected by perturbation of their feeding apparatus
by large algae. Thus, the species composition of both trophic levels changes through the
seasons under the influence of predation and resource competition (Sommer et al., 1986).
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4.1.2 Simple mathematical models of predator-prey interactions

The general model describing the dynamics of prey-predator populations in continuous
time can be written as:

dN

dt
= f(N)N − g(N,P )P (4.1)

dP

dt
= eg(N,P )P − µP (4.2)

where N is prey abundance, P is predator abundance, t is the time, f(N) is the per
capita net prey production in the absence of predation, g(N,P ) is the functional response
of predators (the number of prey killed by one predator in a unit of time), e is the
conversion efficiency and µ is the per capita death rate of predators. The key role in
prey-predator models is played by the functional response g (Solomon, 1949), sometimes
called the trophic function (Svirezhev & Logofet, 1983). Traditionally, it is assumed
that the functional response g is a function of prey density only [prey-dependent feeding,
g = g(N)], without any dependence on predator density (Holling, 1959a; Rosenzweig,
1971; May, 1973). The hypothesis g = g(N) is based on an analogy with the law of mass
action in chemistry assuming that prey and predator individuals encounter each other
randomly in space and time (Royama, 1971). Therefore, the prey-dependent model can
be applied to systems which are spatially homogeneous and in which the time scale of prey
removal by predators is of the same order of magnitude as that of population reproduction
(Arditi & Ginzburg, 1989). These conditions are fulfilled especially in small-scale and well-
mixed laboratory systems containing bacteria (Jannasch, 1967; Luckinbill, 1973; Bazin,
1981), algae (Droop, 1966; Goldman, 1977), protozoa (Taub & McKenzie, 1973), and
under certain conditions also pelagic rotifers (Droop & Scott, 1978; Boraas, 1980) and
cladocera (Arditi et al., 1991b; Arditi & Säıah, 1992).

However, natural ecosystems are usually spatially heterogeneous and the time scales
for feeding and reproduction are also often very different. If the spatial heterogeneity
can be characterized by a double exponential distribution of the encounter time, Ruxton
& Gurney (1994) showed that a purely prey-dependent functional response may still be
derived. However, various other mechanisms (e.g., pseudo-interference, etc.) might lead
to explicit dependence on predator density [g = g(N,P )]. Arditi & Ginzburg (1989)
have argued that, in many cases, this predator dependence could be simplified as a ratio-
dependent model [g = g(N/P )] instead of modeling explicitly all conceivable interference
mechanisms (and thus adding parameters to the model). A most striking difference be-
tween prey-dependent and ratio-dependent models is the response of the equilibria of
trophic levels after an increase in prey production. The prey-dependent model predicts
an increase of predator abundance only, with prey abundance remaining unchanged. In
systems consisting of more than two trophic levels, the prey dependent model predicts
various responses of the several levels to an increase of primary input, depending on the
chain length and on the level considered: no response, proportional response, non-linear
increasing response and non-linear decreasing response (Oksanen et al., 1981; Persson
et al., 1988). On the other hand, the ratio-dependent model predicts proportional re-
sponses of all trophic levels to an increase of primary input (Arditi & Ginzburg, 1989).

Recent analysis of data from freshwater ecosystems have shown evidence that aver-
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age biomasses of fish, zooplankton and phytoplankton are positively correlated along a
gradient of productivity (summarized by Arditi et al. 1991a; Ginzburg & Akçakaya 1992;
Mazumder 1994). These positive correlations between trophic levels are in agreement
with the predictions of the ratio-dependent model if the equilibria of all trophic levels are
approximated by average biomasses over the whole year or over the growing season. On
the opposite, the empirical findings from freshwater ecosystems are in contradiction with
the prey-dependent model predicting a mixture of positive, negative and zero correlations
between trophic levels (Oksanen et al. 1981; Arditi & Ginzburg 1989; Arditi et al. 1991a),
and also a density-dependent mortality rate as proposed by Gatto (1991) predicts these
positive correlations only for two-level systems, not for food chains (see 4.B).

Further insights into this controversy may be gained by comparing directly the tra-
jectories of the two models with time series from real ecosystems. This may be done by
fitting the models to the data and using goodness-of-fit methods as a criterion. Carpenter
et al. (1994) found that by this method the two models could be reliably distinguished
only if the ecosystems underwent considerable perturbations (e.g. caused by introduc-
ing or removing fish populations). Applying this method to such a dataset [zooplankton
and edible phytoplankton in Tuesday lake (Carpenter & Kitchell, 1994)] they detected a
slightly better fit of the ratio-dependent model.

Another method to compare the trajectories is the mathematical analysis of the dy-
namics. Despite numerous results on the equilibrium properties of the two alternative
models, our knowledge about the non-equilibrium properties is limited. In this paper we
present a comparison of the transient behavior of both models before reaching the equilib-
rium. Then, the trajectories of population densities predicted by the models are compared
with the seasonal development of the plankton community in lakes of the temperate zone,
which is understood as a process reaching equilibrium (or quasi-equilibrium) during the
summer. Furthermore we study the qualitative changes of the system dynamics if the
model parameters change (during season or with eutrophication). Suggested seasonal
changes are decreasing predator attack rate (due to increased proportions of inedible al-
gae), increasing predator mortality rate (due to predation by higher trophic levels) and
increasing prey growth rate (due to higher light intensity and water temperature). The
effects of eutrophication are studied by increasing the carrying capacity (see McCauley
et al. 1988).

4.2 Problem formulation

4.2.1 The alternative models

Two-level models consisting of phytoplankton as prey (N) and zooplankton as preda-
tors (P ) will be built with differential equations of type (4.1–4.2). The production of
phytoplankton follows the usual logistic growth:

f(N) = r(1− N

K
). (4.3)

The functional response of zooplankton is described by a concave monotonic upper-



Arditi, Jost, Vyhnálek Alternative phyto-zooplankton models 55

bounded expression. In the prey-dependent model, it is a function of prey density N
(type II, Holling 1959a):

g(N,P ) = g(N) =
aN

1 + ahN
, (4.4)

where a is the searching efficiency and h is the handling time.

In the ratio-dependent model, g is a function of the ratio N/P :

g(N,P ) = g

(
N

P

)
=

αN/P

1 + αhN/P
=

αN

P + αhN
, (4.5)

where α has different units from a.

4.2.2 The required patterns

In order to be satisfied that a simple prey-predator model approximates the complex
succession of events of the PEG-model (Sommer et al., 1986), the following conditions are
required. These criteria are set mainly for the dynamics of phytoplankton but zooplankton
dynamics can be used as a secondary criterion.

1. Starting with a low (winter) biomass, the phytoplankton must present a (spring)
maximum followed by a distinct depression (the clear water phase) and then a high
biomass (during the summer) (Fig. 4.1).

2. A relatively constant biomass of phytoplankton is expected thereafter.

3. Zooplankton dynamics, starting from a low biomass, must follow the spring phy-
toplankton increase with some delay and a stabilization of zooplankton biomass is
expected in the summer.

4. In lakes with a higher degree of eutrophication, i.e., with a higher prey carrying
capacity, the model should show wider amplitudes and a higher algal equilibrium.

Thus, a good qualitative similarity between the simulated dynamics and the PEG-
model is required during the spring and the summer. In the autumn, both phytoplankton
and zooplankton are expected to remain at steady levels in the simulations because the
decline that occurs in nature is assumed to be caused by external physical factors (de-
creasing light and temperature).

4.3 Model analysis and results

4.3.1 Dimensionless forms

With appropriate changes in variables, the two models built on the functional responses
(4.4–4.5) can be simplified to dimensionless forms. This reduces the number of indepen-
dent parameters and makes the mathematical analysis easier. The prey-dependent model
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becomes
dNp

dt′
= R(1− Np

C
)Np −

Np

1 +Np
Pp (4.6)

dPp

dt′
=

Np

1 +Np
Pp −QPp, (4.7)

with Np = ahN , Pp = ahP/e, t′ = et/h, R = rh/e, C = ahK and Q = hµ/e.

The dimensionless form of the ratio-dependent model is

dNr

dt′
= R(1− Nr

D
)Nr −D

Nr

Pr +DNr
Pr (4.8)

dPr

dt′
= D

Nr

Pr +DNr
Pr −QPr, (4.9)

where Nr = αhN/(eK), Pr = αhP/(e2K) and D = αh/e.

4.3.2 Isoclines

The predator isocline is a straight line, which is vertical in the prey-dependent model and
slanted (through the origin) in the ratio-dependent model (Fig. 4.2). The prey isocline is
always parabolic in the prey-dependent case. Its “hump” may be in the positive quadrant
or not. However, the latter case is considered atypical (Rosenzweig, 1969). In the ratio-
dependent model, the prey isocline is usually parabolic-like but it may also have a vertical
asymptote [the “limited predation” case in Arditi & Ginzburg (1989)]. In either case, it
will always be entirely in the positive quadrant.
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Figure 4.2: Typical isoclines of the prey-dependent model (left) and the ratio-
dependent model (right). The humped line is the prey isocline, the straight line
is the predator isocline.

4.3.3 Equilibria

Besides the trivial equilibria (0, 0) and (0, 1), both models have one non-trivial equilibrium
which is, in the prey-dependent model,

N∗
p =

Q

1−Q
(4.10)

P ∗
p =

R

CQ
N∗

p (C −N∗
p ) =

R(C −Q− CQ)

C(1−Q)2
. (4.11)
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and in the ratio-dependent model

N∗
r =

D

R
(DQ +R−D) (4.12)

P ∗
r =

R

DQ
N∗

r (D −N∗
r ) =

D2

QR
(2DQ −DQ2 +R −QR−D). (4.13)

Conditions for the positiveness of the equilibrium are thus

0 <
Q

1−Q
< C (4.14)

in the prey-dependent model and

0 < 1−Q <
R

D
(4.15)

in the ratio-dependent model.

In the prey-dependent model, when the parameter C approaches the bound Q/(1−Q),
the prey equilibrium remains at Q/(1−Q) while the predator equilibrium tends to 0. In
the ratio-dependent model both populations go extinct when 1−Q approaches the upper
bound R/D, while the prey equilibrium tends to D and the predator equilibrium to 0 for
Q approaching 1.

4.3.4 Stability of the non-trivial equilibrium

In both models, the non-trivial equilibrium point can be locally stable or unstable. With
(mij) being the community matrix (the Jacobian at the equilibrium point, see 4.A for
further details), the characteristic equation for the eigenvalues reduces to a quadratic
equation in the case of a two-level model:

λ2 − (m11 +m22)λ+m11m22 −m12m21 = 0. (4.16)

The Routh-Hurwitz criterion (e.g., Amann 1990) says that the equilibrium point is
stable whenever the two conditions

m11m22 −m12m21 > 0 (4.17)

m11 +m22 < 0 (4.18)

hold simultaneously (see 4.A for further details).

In the case of the prey-dependent model, the stability conditions are

Q

1−Q
< C <

1 +Q

1−Q
(4.19)

where the lower bound coincides with the condition for existence of the positive equilib-
rium. In the ratio-dependent model, we have a stable positive equilibrium point whenever
the conditions

D <
Q−Q2 +R

1−Q2
and 1−Q <

R

D
(4.20)
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are fulfilled.

The stable equilibrium may be reached with or without oscillations in both models.
Oscillations occur if the discriminant of equation (4.16) is negative, i.e., if

(m11 −m22)
2 + 4m12m21 < 0. (4.21)

This criterion gives rather complicated upper and lower bounds for C (respectively D)
which the interested reader may find in 4.A. More important than the formulas is the
visualization in parameter portraits (Fig. 4.3, see next subsection).
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Figure 4.3: Parametric portraits of C versus Q for fixed R (upper left) and of C
versus R for fixed Q (lower left) for the prey-dependent model and of D versus
Q for fixed R (upper right) and of D versus R for fixed Q (lower right) for the
ratio-dependent model. In regions 1 populations go extinct, in regions 2 the stable
equilibrium point is reached without oscillations, in regions 3 the equilibrium point
is a spiral node, in regions 4 the positive equilibrium point is a spiral repellor and
in regions 5 the positive equilibrium is an ordinary repellor.

4.3.5 Comparison of dynamic properties in the two models

The criteria for positive equilibrium point, stability (attractor or repellor) and oscillations
(spiral or non-spiral) can be expressed in a graphic form as parametric portraits of the
parameters C (resp. D) and Q after fixing R as a constant. In order to identify the effect
of changing the growth rate r, another parametric portrait has been created where C
(resp. D) is plotted versus R while keeping Q constant (see Fig. 4.3).

Several interesting properties of the models can be pointed out:
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• The existence of positive equilibria requires in both models that Q < 1 holds or, in
the original parameters, that µh < e.

• There is a fundamental difference regarding the size of the searching efficiency a
(resp. α): while in the case of prey-dependence, it has a lower bound (a > µ/[K(e−
µh)] because C > Q/(1−Q)), in the case of ratio-dependence it has an upper bound
(α < re/(e− µh) because D < R/(1 −Q)).

• For C ≤ 1 (resp. D ≤ 1), in both models the positive equilibrium is stable. However,
for C > 1 (resp. D > 1 ), the equilibrium can be either stable or unstable. In the
initial parameters, this means that an unstable positive equilibrium can exist in the
prey-dependent model for ahK > 1 and in the ratio-dependent model for αh > e.

• In the ratio-dependent model, unstable equilibrium points are possible only for
D > R, while for D ≤ R only stable equilibrium points exist. The reason is
that if α ≤ r (⇔ D ≤ R), the prey isocline has a vertical asymptote and the
equilibrium point is always stable (Arditi & Ginzburg, 1989). On the other hand,
if α > r (⇔ D > R), the prey isocline is “humped” and either stable or unstable
equilibrium points can be found. Note that equilibria can be stable even if they lie
on the ascending part of the hump in contrast to an erroneous assertion in Arditi
& Ginzburg (1989) (see Jost et al. (1999) for an analytical proof). No similar
condition is present in the prey-dependent model, which has only humped isoclines,
and equilibria lying on the ascending part of the prey isocline are always unstable.

• In the prey-dependent model, since C = ahK, increasing the carrying capacity K
in Eq. (4.3) acts as a destabilizing factor (see Fig. 4.3: increasing K increases C ,
thus leaving the area of stable positive equilibrium). This fact is well known as the
“paradox of enrichment” (Rosenzweig, 1971) (see Fig. 4.4a). No such destabilizing
effect of K exists in the ratio-dependent model: K is used (in the dimensionless
form) as a scaling factor only for Nr and Pr, but not for any of the parameters D,
Q, or R. Therefore, the only influence of increasingK is to increase both populations
N and P in the same proportion (see Fig. 4.4b).

• The prey growth rate r does not influence stability in the prey-dependent model,
since changing r moves the parameter pair (C,R) along a horizontal line (lower
graphs in Fig. 4.3) which does not intersect any of the stability bounds (it may only
influence the oscillatory behavior). In the ratio-dependent model, on the contrary,
for any Q < 1 and anyD, increasing r will stabilize the equilibrium, while decreasing
r will make the system leave the area of positive equilibrium points (extinction of
both populations).

4.3.6 Model trajectories and plankton seasonality

According to the criteria 1–2 stated above (Fig. 4.1), plankton dynamics must reach a
stable equilibrium after one oscillation. Therefore, the trajectories obtained in the areas
of stable equilibrium points reached after oscillations (regions 3 in Fig. 4.3) must be
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Figure 4.4: Influence of K on the stability, shown here for the prey dynamics (higher
amplitudes with higher K), for the prey-dependent model (a) and for the ratio-
dependent model (b).

examined. Typical prey (phytoplankton) trajectories in this region are presented in Fig.
4.5 for both models. A distinct maximum is formed if the starting biomass is low. Then, a
deep minimum can follow. However, in such case, a low equilibrium point is reached after
many oscillations, gradually decreasing in amplitude. If it is attempted to reach a high
steady state after few oscillations, this can only be the case with a very mild depression of
the prey biomass after the first maximum (see Fig. 4.5). That there can only be a gradual
decrease of amplitudes and not a first strong oscillation followed by small oscillations
around a high equilibrium is intuitively apparent for both models already when looking
at the isocline portraits (Fig. 4.2).

Prey dependence Ratio dependence

(a) (b)

timetime

pr
ey
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Figure 4.5: Trajectories of prey in the area of stable equilibrium points reached with
oscillations (prey-dependent model (a) and ratio-dependent model (b)). The highly
oscillating trajectory was produced with parameters near the criterion of stability,
the other with parameters near the criterion of oscillations.

The predator (zooplankton) exhibit similar trajectories, lagging behind the prey tra-
jectory. In this respect criterion 3 can be considered satisfied by both models.

With respect to criteria 1–2, it is clear that neither the prey-dependent nor the ratio-
dependent model are able to generate satisfactory trajectories. Both are unable to gen-
erate the spring clear water phase, along with a stable equilibrium in the summer, of a
magnitude similar to the first peak and reached after few oscillations.

However, increasing eutrophication (increasing K) behaves differently in both models
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(Fig. 4.4). IncreasingK has a destabilizing effect (higher amplitudes, increasing frequency,
finally sustained oscillations) with an unchanged prey equilibrium in the prey-dependent
model. In the ratio-dependent model, there are no effects on stability properties; only a
quantitative, proportional increase in the amplitudes and in the level of the prey equi-
librium. With respect to criterion 4, the ratio-dependent model behaves therefore much
better than the prey-dependent model.

4.3.7 Seasonal changes of parameter values

The above analysis assumed autonomous equations, i.e., time-independent parameters.
However, it can be argued that one or several parameters must change along the seasons.
First, it is most reasonable to assume that the phytoplankton intrinsic growth rate r in-
creases as temperature increases from spring to summer. Second, zooplankton parameters
may also change: the attack rate a (resp. α) can decrease as a result of an increased pro-
portion of inedible algae and the mortality rate µ can increase because of increased fish
predation. Using the expressions for the non-trivial equilibria (4.10–4.13), and inspecting
Fig. 4.3, it can be seen that variations of the parameters as just suggested have the effects
summarized in Table 4.1. Variations in a (resp. α) or in µ have in both models more or
less the same effect, i.e., an increase of the prey equilibrium and a stabilization, which
is in agreement with our required criteria. Increasing the prey growth rate r has practi-
cally no qualitative effect in the prey-dependent model, while it has a desirable effect in
the ratio-dependent model (i.e., an increase of the prey equilibrium and a stabilization).
Given these properties, it is not difficult to find scenarios with varying parameters that
will generate the desired trajectories with either model. Examples are given in Fig. 4.6.

Table 4.1: Summary of the possible trends of parameters during the season or with
eutrophication and their effects on system stability and equilibria.

effects in
Parameter Cause Time prey- ratio-
varied scale dependence

equ. stab. equ. stab.
K ↗ Eutrophication Decades - ↘1+ ↗ 2+

r ↗ Temp. increase Seasonal - - ↗ ↗
a↘ increase of Seasonal ↗ ↗∗ ↗ ↗
(α↘) inedible algae
µ↗ higher predation Seasonal ↗ ↗∗ ↗ ↗∗

1+: increasing frequency and amplitude
2+: same frequency, increasing amplitude
∗: with further change the parameters leave the area of positive equilibrium
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Figure 4.6: Resulting trajectories if the predator death rate µ is increasing during
the season. Both the prey-dependent (a) and the ratio-dependent (b) model may
thus show the desired trajectories.

4.4 Discussion

The most important difference between the prey-dependent and ratio-dependent two-
level models is the fact that an increase of prey carrying capacity K causes an increase of
both prey and predator equilibrium densities in the ratio-dependent model, whereas only
predator equilibrium density increases in the prey-dependent model (Arditi & Ginzburg,
1989). This property at steady-state conditions has to be considered also when studying
nonsteady-state characteristics of both models. Moreover, general plankton dynamics
seem to be relatively independent of trophic input, because similar seasonality of plankton
was found in lakes of different levels of eutrophication. This enabled the formulation of
the PEG-model (Sommer et al., 1986). This property is only found in the ratio-dependent
model, where changes of K, the main parameter changing with the trophic input, have
no influence on the qualitative behavior, only on the amplitudes (see figure 4.4). On the
other hand, the stability of the prey-dependent model depends on K and the trajectories
can be qualitatively different for different values of K.

However, despite the mentioned slight advantages of the ratio-dependent model, both
models give qualitatively similar trajectories which cannot fulfill our criteria for plankton
seasonality. Their basic property is a gradual decrease of the amplitude of oscillations
after the first maximum, which is affected by the starting conditions. It is impossible to
obtain a distinct clear water phase period followed by a sudden decrease of amplitude
and fast reaching of stable equilibrium. The desirable trajectories in two-level models can
only be obtained if some parameter (or parameters) change during the season, shifting
the system from the area of unstable to the area of stable equilibrium. An analogous
approach was used in (McCauley et al., 1988) to explain the proportional growth of phy-
toplankton and zooplankton with increasing productivity on the basis of prey-dependent
models. They assume the following trends with increasing nutrient status of lakes: 1. the
realized per capita growth rate of phytoplankton (both edible and inedible) increases, 2.
Daphnia’s attack rate decreases in response to increasing concentration of inedible algae,
3. Daphnia’s death rate increases in response to greater predation pressure.

Similar trends can be expected also during a growing season. A seasonal shift from ed-
ible to inedible algae has been documented in many lakes (Sommer et al., 1986). Colonial
cyanobacteria often dominate in lakes exceeding a certain level of eutrophication during
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a summer period (Sas, 1989). Therefore, a decrease of the attack rate of Daphnia can be
expected in the summer. An increase of the maximum growth rate of phytoplankton (r)
is probable due to a rise of temperature and light. The death rate of herbivorous zoo-
plankton is probably extremely variable and changing in the spring, while in the summer
it seems more uniform (Seda, 1989). Lampert (1978) found in Lake Constance, that the
Daphnia population is not controlled by food in the spring but by adult individuals of
carnivorous Cyclops vicinus. The spring maximum of Daphnia can develop only when
Cyclops dies out. Feeding activity of planktivorous fish increases during the season along
with increasing temperature. In addition, some species do not feed during reproduction
in the spring (...). Therefore, a general increase of grazing pressure on herbivores during
the season (thus an increasing predator mortality rate µ in our models) can be expected,
probably with dramatic short-term changes in the spring.

Gatto (1991) proposes to introduce a density dependent mortality of predator µ(P ).
After this modification, the prey-dependent two-level model predicts a proportional in-
crease of both equilibrium densities, but the trajectories still exhibit qualitatively similar
properties as in the standard prey-dependent models, especially a gradual decrease of the
amplitude of oscillations after the first maximum. Moreover, when applying this to three
levels the positive correlations in general only hold for the top two levels, not for the lower
two levels under consideration (see 4.B).

One might suggest that the clear water phase is the result of cycling populations rather
than populations reaching equilibrium. Several arguments speak against this interpreta-
tion. Sommer et al. (1986) analyzed 24 different lakes and interpreted the high summer
abundances as being in steady state. Furthermore, there are no reported limit cycles of
plankton in tropic lakes, which are permanently in the summer state of lakes in temperate
zones.

A further explanation for the insufficiency of a two-level model for application in plank-
ton dynamics can be that some processes not included in the model play an important
role. It can be true especially in the spring, generally understood as a disequilibrium
period (McCauley et al., 1988). Physical and chemical parameters change suddenly and
these changes can influence the development of organisms in water. Vyhnálek et al.
(1994) found that the spring bloom of phytoplankton grown in the canyon-shaped Řı́mov
Reservoir is formed by phytoplankton grown in the head of the reservoir and then drifted
downstream to the main lake. This process accelerates spring dynamics of phytoplankton.
The collapse of phytoplankton and the induction of the clear water phase appears to be
the key problem of plankton dynamics. In the PEG-model, it is interpreted as a con-
sequence of prey-predator interactions (Sommer et al., 1986). However, several authors
found that the sudden crash of phytoplankton is a consequence of nutrient limitation and
subsequent sedimentation of phytoplankton (Gawler et al., 1988; Jeppesen et al., 1990;
Weisse et al., 1990) or even of lysis of algal cells (van Boekel et al., 1992; Vyhnálek et al.,
1993). In these cases grazing of herbivores is a parameter of second rate importance
and the depression of phytoplankton biomass (the clear water phase) is not caused by
prey-predator relationships.

In summary, neither the prey-dependent nor the ratio-dependent prey-predator models
composed of phytoplankton and zooplankton are able to predict seasonal dynamics of
these two levels. Nevertheless, the ratio-dependent model seems to be more realistic in
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view of the following properties: 1. both phytoplankton and zooplankton biomasses at
equilibrium increase with increasing productivity and 2. there is no effect of productivity
on the stability of the system. To obtain the expected prediction, with a clear water
phase and a stable equilibrium rapidly reached in the summer, the following modifications
of the two-level ratio-dependent model are proposed: 1. parameters of phytoplankton
and zooplankton change during the season, 2. introduction of a third level (carnivorous
zooplankton or fish), 3. introduction of phytoplankton mortality other than zooplankton
grazing (sedimentation, lysis).
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Appendix

4.A Detailed matrix analysis

In this chapter we will develop the detailed Jacobian matrices for both (dimensionless)
models. Since we will analyze one model after the other we will omit the subscripts p for
prey-dependent and r for ratio-dependent for easier notation.

4.A.1 Prey-dependent model

The differential equations are given by

dN

dt
= R(1− N

C
)N − N

1 +N
P (4.22)

dP

dt
=

N

1 +N
P −QP. (4.23)

This system has the two trivial equilibria (0, 0) and (C, 0) and the non-trivial equilibrium

(
Q

1−Q
,
(C −Q− CQ)R

C(1−Q)2

)
. (4.24)

The Jacobian is [
R− 2NR

C
− P

(1+N)
+ NP

(1+N)2
− N

1+N
P

(1+N)2
N

1+N
−Q

]
. (4.25)
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At the equilibrium (0, 0) this matrix evaluates at

[
R 0
0 −Q

]
, thus (0, 0) is a saddle

point. At (C, 0) we get

[ −R − C
1+C

0 C
1+C
−Q

]
, thus (C, 0) is stable whenever C

1+C
< Q. At

the non-trivial equilibrium point the Jacobian is[
Q(1−C+Q+CQ)R

C(Q−1)
−Q

R −QR− QR
C

0

]
=

[
m11 m12

m21 m22

]
(4.26)

and its stability analysis is done in the text, while the oscillation criterion,

(m11 −m22)
2 + 4m12m21 < 0, (4.27)

resolves to

−2Q+ 4Q2 − 2Q3 +QR−Q3R − 2
√
(1−Q)3Q(Q−Q2 +R+QR)

(1−Q)2(4(Q− 1) +QR)
< C < (4.28)

−2Q+ 4Q2 − 2Q3 +QR−Q3R − 2
√
(1−Q)3Q(Q−Q2 +R +QR)

(1−Q)2(4(Q− 1) +QR)
. (4.29)

The first expression tends to a finite value for Q → 4
4+R

, while the second expression is
not defined at this value. Therefore the first inequality holds over the whole range of Q
(0 < Q < 1), while the second inequality only applies for Q between 4

4+R
and 1.

4.A.2 Ratio-dependent model

The differential equations are given by

dN

dt
= R(1− N

D
)N −D

N

P +DN
P (4.30)

dP

dt
= D

N

P +DN
P −QP. (4.31)

This system has the two trivial equilibria (0, 0) and (D, 0) and the non-trivial equilibrium(
D(DQ +R −D)

R
,
D2(1−Q)(DQ+R −D)

QR

)
. (4.32)

The Jacobian is [
R− 2NR

D
− DP

DN+P
+ D2NP

(DN+P )2
− D2N2

(DN+P )2

DP 2

(DN+P )2
D2N2

(DN+P )2
−Q

]
. (4.33)

At the equilibrium (D, 0) this matrix evaluates at

[
−R −1
0 1−Q

]
, thus (D, 0) is

stable whenever 1 < Q (i.e. when the predator isocline has a negative slope and there is
no non-trivial positive equilibrium for prey and predator).
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At the non-trivial equilibrium point the Jacobian is[
D −DQ2 − R −Q2

D(1 −Q)2 Q(Q− 1)

]
(4.34)

and its stability analysis is done in the text, while the oscillation criterion,

(m11 −m22)
2 + 4m12m21 < 0, (4.35)

resolves to

−Q+ 3Q2 − 3Q3 +Q4 +R−Q2R − 2
√
(Q− 1)3Q2(Q−Q2 − R−QR)

(1−Q2)2
< D < (4.36)

−Q+ 3Q2 − 3Q3 +Q4 +R −Q2R+ 2
√
(Q− 1)3Q2(Q−Q2 − R −QR)

(1−Q2)2
.(4.37)

The equilibrium (0, 0) is less easy to analyze since neither the differential equations
nor the Jacobian are defined at this point. Since the local behavior depends on how the
flow looks like close to (0, 0) we reformulate our equations for the variables P and L := N

P
:

dL

dt
= L(R+Q− R

D
LP )−D

L(1 + L)

1 +DL
(4.38)

dP

dt
= D

LP

1 +DL
−QP. (4.39)

This new system has three equilibria, a non-trivial one that shows the same behavior as
the non-trivial equilibrium in the original system, and two equilibria on the L axis, (0, 0)
and (0, D−Q−R

D(Q+R−1)
). The former is stable whenever D > Q + R and the latter is a saddle

point whenever the non-trivial equilibrium is positive in both variables, as may be seen
on the isocline graph. Applied to the original system this means that for D < Q+R and
if there exists a positive non-trivial equilibrium (0, 0) is a saddle point, else it is attractive
for all trajectories where N/P approaches 0.

4.B Some effects of a density dependent mortality

rate

Gatto (1991) and Gleeson (1994) pointed out that in food chains with Lotka-Volterra func-
tional responses and a toppredator with a mortality rate that is proportional to its density
the equilibrium densities of all trophic levels are correlated with primary productivity. We
will study the equilibrium behavior in a more general food chain with three trophic levels,
prey-dependent functional responses and a general density-dependent mortality rate of
the top predator,

dP

dt
= f(P )P − g1(P )H (4.40)

dH

dt
= e1g1(P )H − g2(H)C (4.41)

dC

dt
= e2g2(H)C − µ(C)C, (4.42)
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where P are plants, H are herbivores and C are carnivores. f(P ), g1(P ) and g2(H) are
increasing, bounded functions of their respective arguments. We assume that plant and
herbivore natural mortality is negligible compared to the mortality due to predation and
that the carnivore abundance in never close to 0.

In most models, the carnivore mortality rate is assumed to be a constant, µ(C) = µ.
Here we assume that µ(C) is some increasing, bounded function (due to passive or active
direct inhibition of competitors or if this trophic level is itself subject to predation by
some higher predator with Holling type III functional response Holling (1959a)).

Setting (4.42) to 0 and solving for C we get

C = µ−1(e2g2(H)), (4.43)

thus at equilibrium C is positively correlated with P . Solving (4.41) for P we get

P = g−1
1 (

g2(H)µ−1(e2g2(H))

e1H
. (4.44)

For small H g2 may be approximated by some linear function, g2(H) ≈ cH. In this case
we get

P = g−1
1 (

cµ−1(e2cH)

e1
, (4.45)

therefore P and H are positively correlated for small H. For large H g2 may be approxi-
mated by some constant, g2(H) ≈ c. This gives

P = g−1
1 (

cµ−1(e2c)

e1H
), (4.46)

therefore P is negatively correlated with H. We may conclude that a density dependent
mortality rate of the top predator only leads to positive correlations between equilibrium
abundances of the top two levels, nothing specific can be said about correlations with the
lowest level.



Figure 4.7: Dynamics of total phytoplankton, herbivorous zooplankton and temper-
ature in 1989. The developpement is representative for all years.
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Abstract

Ratio-dependent predator-prey models set up a challenging issue regarding their dynamics
near the origin. This is due to the fact that such models are undefined at (0, 0). We study
the analytical behavior at (0, 0) for a common ratio-dependent model and demonstrate
that this equilibrium can be either a saddle point or an attractor for certain trajectories.
This fact has important implications concerning the global behavior of the model, for
example regarding the existence of stable limit cycles. Then, we prove formally, for a
general class of ratio-dependent models, that (0, 0) has its own basin of attraction in phase
space, even when there exists a non-trivial stable or unstable equilibrium. Therefore, these
models have no pathological dynamics on the axes and at the origin, contrary to what
has been stated by some authors. Finally, we relate these findings to some published
empirical results.

Les modèles proie-prédateur du type ratio-dépendant posent un défi concernant leurs
dynamiques proches de l’origine. Ceci est due au fait que ces modèles ne sont pas définis
à (0, 0). Nous étudions le comportement analytique autour (0, 0) pour un modèle ratio-
dépendant simple et démontrons que cet équilibre peut être un point de sel ou un at-
tracteur pour certains trajectoires. Ce fait à des implications importantes concernant
le comportement globale du modèle, par exemple concernant l’éxistence de cycles limites
stables. Ensuite, nous prouvons formellement pour une classe générale de modèles du type
ratio-dépendant que (0, 0) tient son propre bassin d’attraction, même s’il y a un équilibre
non-trivial stable ou instable. Donc, ces modèles n’ont pas de comportements dynamiques
pathologiques sur les axes et à l’origine, contrairement aux énoncés de certains auteurs.
Finalement, nous comparons ces résultats avec quelques résultats empiriques trouvés dans
la littérature.
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5.1 Introduction

Continuous predator-prey models have been studied mathematically since publication of
the Lotka-Volterra equations. The principles of this model, conservation of mass and
decomposition of the rates of change into birth and death processes, have remained valid
until today and many theoretical ecologists adhere to these principles. Modifications were
limited to replacing the Malthusian growth function, the predator per capita consumption
of prey or the predator mortality by more complex functions such as the logistic growth,
Holling type I, II and III functional responses or density-dependent mortality rates.

The mentioned functional responses all depend on prey-abundance N only, but soon
it became clear that predator abundance P can influence this function (Curds & Cock-
burn, 1968; Hassell & Varley, 1969; Salt, 1974) by direct interference while searching or
by pseudo-interference (in the sense of Free et al. (1977)) and models were developed
incorporating this effect (Hassell & Varley, 1969; DeAngelis et al., 1975; Beddington,
1975). However, these models usually require more parameters and their analysis is com-
plex. Therefore, they are, on one side, rarely used in applied ecology and, on the other
side, have received little attention in the mathematical literature. A simple way of in-
corporating predator dependence into the functional response was proposed by Arditi &
Ginzburg (1989) who considered this response as a function of the ratio N/P . Interesting
properties of this approach have emerged that are in contrast with predictions of models
where the functional response only depends on prey abundance (e.g. Arditi et al. (1991a),
Ginzburg & Akçakaya (1992), Arditi & Michalski (1995)). Two principal predictions for
ratio-dependent predator-prey sytems are: (1) equilibrium abundances are positively cor-
related along a gradient of enrichment (Arditi & Ginzburg, 1989) and (2) the ‘paradox of
enrichment’ (Rosenzweig, 1971) either completely disappears or enrichment is linked to
stability in a more complex way. However, we will not discuss here the general ecological
significance of this class of models but rather study a particular mathematical feature
of this model: the behavior around the point (0, 0) (where the models are not directly
defined) and its implications on global behavior. Interesting dynamic behaviors such as
deterministic extinction and multiple attractors can occur.

There are only few mathematical publications that study ratio-dependent models.
Many of them use logistic-type models where density dependence in the growth equation
is proportional to the ratio consumer/resource (e.g., the popular Holling-Tanner model
(Tanner, 1975)). However, these models do not abide by the conservation of mass rule
(reproduction rate of predators is a function of the consumption rate, Ginzburg (1998)).
We are rather interested in ratio-dependent models that respect this conservation of mass
(or energy) as an important aspect of ecological modelling. This further reduces the
available literature on this class of models. Cosner (1996) developed floor- and ceiling
functions to understand the behavior of complex systems that include temporal variability,
and ratio-dependent formulations proved to be more adapted to this kind of study. Beretta
& Kuang (1998) studied the influence of delays on the stability behavior of the non-trivial
equilibrium.

Freedman & Mathsen (1993) studied conditions for persistence of a specific ratio-
dependent predator-prey model. They restricted their analysis to parameter values that
ensure that the equilibrium (0, 0) behaves like a saddle point. They based this restriction
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on the assertion that attractivity of this trivial equilibrium is possible only with parameter
values for which the predator abundance P (t) increases without bound as a function of
time. In this paper, we will show that this assertion is erroneous and we will reanalyze
the general stability behavior of a typical ratio-dependent model around the equilibrium
(0, 0). Furthermore, we will give a formal proof (for a general ratio-dependent model) that
this point can become attractive for all initial conditions sufficiently close to the predator
axis, while the non-trivial equilibrium remains either locally stable or becomes unstable.
This gives rise to global behaviors that range from global attractivity of the non-trivial
equilibrium, coexistence of two different attractors (each with its own basin of attraction)
to global attractivity of the equilibrium (0, 0).

Extinction is a frequent outcome in simple laboratory predator-prey systems (Gause,
1935; Luckinbill, 1973) and biologists had to modify conditions in order to obtain (cyclic)
coexistence [e.g., spatial heterogeneities (Huffaker, 1958) or viscous medium to slow down
the predators (Veilleux, 1979)]. Since traditional predator-prey models predict cyclic
dynamics, extinction has been explained as the result of stochasticity occurring when the
trajectories come close to the axes. In this paper we show that, for some region in the
parameter space of a ratio-dependent model, multiple attractors can appear, one of them
being the origin. Therefore, extinction can be explained as a simple deterministic process.

5.2 The model and its equilibria

A predator-prey system that incorporates conservation of mass and division of population
rates of change into birth and death processes has the following canonical form:

dN

dt
= f(N)N − g(N,P )P (5.1)

dP

dt
= eg(N,P )P − µP (5.2)

with prey abundance N(t) and predator abundance P (t), conversion efficiency e and
predator death rate µ. We will use the traditional logistic form for the growth function f
with maximal growth rate r and carrying capacity K:

f(N) = r(1− N

K
).

The functional response g (prey eaten per predator per unit of time), that in general
depends on both prey and predator density, will be considered as a (bounded) function
of the ratio prey per predator,

g := g(
N

P
) =

αN/P

1 + αhN/P
=

αN

P + αhN
∀(N,P ) ∈ [0,+∞)2\(0, 0) (5.3)

with total attack-rate α and handling time h. Note that the second equality is strictly
correct only for P > 0. In the case of P = 0 and N > 0 we can define g(N, 0) := 1/h (the
limit of g(x) for x→∞).
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In a first step we simplify this model by non-dimensionalisation. Let N̂ = αhN
eK

,

P̂ = αhP
e2K

, R = rh
e
, Q = hµ

e
, S = αh

e
and t̂ = et

h
. In these new variables the system

becomes:

dN̂

dt̂
= R(1− N̂

S
)N̂ − SN̂

P̂ + SN̂
P̂ (5.4)

dP̂

dt̂
=

SN̂

P̂ + SN̂
P̂ −QP̂ (5.5)

with initial conditions N̂(0) = n0, P̂ (0) = p0. For simplicity we will not write the hat ˆ
in the rest of this paper.

This system has at most three equilibria in the positive quadrant: (0, 0), (S, 0) and a
non-trivial equilibrium (n�, p�) with

n� =
S(R + (Q− 1)S)

R

p� =
S(1−Q)

Q
n�.

A simple calculation shows that n� is positive for all S < R/(1−Q), which implies Q < 1
and therefore ensures the positivity of p�.

To see why (0, 0) is indeed an equilibrium (despite the fact that g is undefined in that
case) note that for any g that is a non-negative bounded function in its domain (such as
(5.3)) the right sides of system (5.1-5.2) become 0 at this point, which is the definition of
an equilibrium (boundedness of g is a sufficient condition, but not a necessary one).

Figure 5.1 shows the possible isoclines of the system. For S > R, the prey isocline is
a humped curve through the origin and the point (S, 0). For S < R, the denominator of
the prey isocline can become 0 for some N ∈ (0, S). The part of the isocline that remains
in the positive quadrant becomes in this case a strictly monotonically descending curve
through the point (S, 0). The predator isocline is always a straight line through the origin.
See Arditi & Ginzburg (1989) for more details. While the cases of Figures 5.1a and 5.1c
do not raise mathematical difficulties, the case of Figure 5.1b presents interesting and
unexpected mathematical properties that will be studied below.

5.3 Stability of the equilibria

The community matrix (Jacobian at the equilibrium) at the point (S, 0) is[
−R −1
0 1−Q

]

and therefore, if the non-trivial equilibrium exists (=⇒ Q < 1), this point is always a
saddle point.

The community matrix at (n�, p�) has the form[
−R + S −Q2S −Q2

(Q− 1)2S (Q− 1)Q

]
.
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Isop

Isop

Isop

Ison

Ison Ison

Figure 5.1: The three general types of isoclines that can occur. (a): the non-trivial
equilibrium is stable and (0, 0) behaves like a saddle point (R = 0.5, Q = 0.3, S =
0.4). (b): both equilibria can be attractive or repelling, creating dynamics that
are illustrated in Figures 5.2 - 5.5. (c): the equilibrium (0, 0) is globally attractive
(R = 0.5, Q = 0.79, S = 3.0). The lines with arrows are examples of trajectories,
Ison is the prey isocline and Isop the predator isocline.

Applying the Routh-Hurwitz criterion shows that this equilibrium is stable whenever

S < min

{
R

1−Q
,
Q−Q2 +R

1−Q2

}
. (5.6)

Note that, if R
1−Q

< Q−Q2+R
1−Q2 (⇐⇒ R + Q < 1), then the non-trivial equilibrium is

always stable (if it exists). This is possible with two types of isoclines, Figures 5.1a and
5.1b. The case of Figure 5.1b together with this condition (allowing arbitrarily low stable
equilibrium densities of both prey and predator) is particularly interesting in the context
of biological control where the interest is in non-trivial stable equilibria with n� � S.
The non-trivial equilibrium in Figure 5.1a is also always stable (independently of the
above criterion), because its existence ensures that Q < 1, therefore, if S < R, then S
also fulfills criterion (5.6). However, this case is less interesting because it requires high
predator densities to keep the prey density low.

At the equilibrium (0, 0) the community matrix cannot be calculated directly because
the ratio N/P is not defined at this point. To understand the stability behavior of this
point we must expand it on a whole axis by studying the transformed systems (N/P, P )
and (N,P/N). Setting L := N/P , then we have the system

dL

dt
= L(R +Q− R

S
LP ) − S

L(1 + L)

1 + SL
dP

dt
= (

SL

1 + SL
−Q)P.

There are two equilibria on the L-axis, (0, 0) and ( S−Q−R
S(Q+R−1)

, 0). (0, 0) is a saddle point

for S < Q+R (eigenvalues of the community matrix are −Q and Q+R− S), otherwise
it is attractive. The latter equilibrium has the eigenvalues

λ1 =
S(1−Q)− R

S − 1
, λ2 =

SQ+R − S +Q+ SR − (R+Q)2

S − 1
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and it is unstable whenever a non-trivial equilibrium exists.

Proof. Let S < 1. If the non-trivial equilibrium exists (S < R/(1 − Q)) then λ1 > 0,
therefore the equilibrium is unstable.

Now let S > 1. The existence of the non-trivial equilibrium ensures in this case that
R +Q > 1. Furthermore, S−Q−R

S(Q+R−1)
must be positive to be of interest, therefore

S > Q+R (5.7)

and

λ2 =
1

S − 1
(S(Q− 1) + (Q+R)− (R +Q)2 + SR

(5.7)
>

1

S − 1
((Q+R)(Q− 1 + 1− R−Q) + SR

=
1

S − 1
(R(S − (Q+R))

(5.7)
> 0.

This equilibrium is therefore unstable.

Finally, we need the stability behavior of (0, 0) for the system (N,M) withM := P/N ,

dN

dt
= N

(
R − N R

S
− K S

K + S

)
dM

dt
=

M (S (N R− (Q+R− 1) S) +M (N R + S (S −Q− R)))

S (M + S)
.

The community matrix at (0, 0) has the eigenvalues λ1 = 1 − R − Q, λ2 = R and the
point (0, 0) is therefore always unstable.

Summarizing we can conclude for the original system (N,P ) that for S < Q + R
the equilibrium (0, 0) behaves like a saddle point. For S > Q + R we have seen that
the system (N/P, P ) has an attractive equilibrium at its origin (0, 0). Interpreted in the
original state variables N and P this point can only be attained by a trajectory for which
‘N goes faster to 0 than P ’. Below, we will discuss the existence of such trajectories.

Freedman & Mathsen (1993), who studied in their paper the same model (5.4) and
(5.5), excluded the latter case (S > Q + R) from their persistence analysis of ratio-
dependent models by stating (p. 823) that “this implies that there are solutions (N(t),
P (t)) −→ (0,+∞) as t −→ ∞”. The following proposition proves that this statement
is erroneous.

Proposition 5.3.1. The system of equations (5.4-5.5) is ultimately bounded with some
bound independent of the initial values.

Proof. Let b, c > 0 such that (R+b)2S
4R

< c (for any b, such a c can be found).

(R + b)2S

4R
< c

⇔ (R + b)2 − 4
R

S
c < 0

⇔ 0 <
R

S
N2 −N(R + b) + c ∀N (5.8)
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Therefore we have

d

dt
(N + P ) = RN − R

S
N2 −QP

(5.8)
< −bN −QP + c

< −d(N + P ) + c

with d := min(b, Q). So we can conclude that lim sup
t→∞

(N(t) + P (t)) ≤ c
d
. Note that we

have N(t) + P (t) ≤ max(N(0) + P (0), c
d
), ∀ t ≥ 0.

Freedman & Mathsen (1993) also point out that a general ratio-dependent model can
pose definition problems on the predator axis. However, if the functional response is
restricted to being positive and bounded (two properties not contested in ecology and
implicit in the model studied here), then (5.1) and (5.2) are perfectly well defined on the
whole positive quadrant [0,+∞)2\(0, 0), and the analysis in this paper shows that the
behavior at (0, 0) has nothing abnormal that would justify its exclusion.

If the non-trivial equilibrium were unstable and the point (0, 0) a saddle point, then
we could construct easily a positive invariant set that contains these two equilibria and
apply the Poincaré-Bendixson theorem to prove the existence of a limit cycle. However,
the following proposition holds:

Proposition 5.3.2. For S < Q + R the non-trivial equilibrium (if it exists) is locally
stable.

This means that, if the non-trivial equilibrium is unstable, then S > Q+R, implying,
as shown earlier, that (0, 0) is not a saddle point. This complicates considerably the con-
struction of the positive invariant set required to apply the Poincaré-Bendixson theorem.
We have not found such a set but do not exclude that it can exist.

Proof of proposition. a) For R + Q < 1 we have already seen above that all existing
non-trivial equilibria are stable.

b) For R+Q > 1, we have

R = R(1−Q2 +Q2)
R>1−Q
> R(1−Q2) + (1−Q)Q2

=⇒ R > (1−Q)(R+Q2 +RQ)

=⇒ R

1−Q
> (Q+R)(1 +Q)−Q

=⇒ R +Q(1−Q)

(1−Q)(1 +Q)
> Q+R > S

and, according to criterion (5.6), the non-trivial equilibrium is stable.

Getz (1984) gave a proof of existence of a stable limit cycle for a ratio-dependent
model that only differed from the model used here by its prey growth function [ar/(bN +
r)− c instead of r(1−N/K)]. He did not study rigorously the behavior at (0, 0), simply
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stating that the isocline graph ‘demonstrates’ that it is a saddle point (as required by the
Poincaré-Bendixson theorem, since the origin is part of the positive invariant set that he
constructed). However, the general analysis in the next section applies also to his system
and it shows that (0, 0) can become attractive. His graphical interpretation is therefore
incorrect. It can be seen numerically that there are cases for which (0, 0) becomes globally
attractive instead of having a stable limit cycle around the non-trivial equilibrium (as in
Figure 5.5).

5.4 (0, 0) as an attractor

So far we have only shown that the equilibrium (0, 0) can be attractive for trajectories
where ‘N goes faster to 0 than P ’, but we do not know yet if this type of trajectory really
exists. In this section we will give a formal proof for this. This proof will be given for any
growth function f and any functional response g in the general form of system (5.4-5.5),

dN

dt
= f(N)N − g(N/P )P

dP

dt
= g(N/P )P −QP,

with f and g having the following properties:

- f and g are continuous in R+ and both functions are bounded

- f(N) < f(0) ∀ N > 0

- g(0) = 0, g′(v) exists and is positive for any v ≥ 0.

Proposition 5.4.1. Assume f(0) < g′(0)−Q (i.e. Q+R < S, in our system (5.4-5.5)).
Then, any trajectory for which n0 is sufficiently small compared to p0 converges to the
point (0, 0).

Note that this proposition is a generalisation of a recent result by Kuang & Beretta
(1998).

Proof. Consider the system (N,L) with L := N
P
,

dN

dt
= f(N)N − g(L)

N

L
dL

dt
= f(N)L − (1 + L)g(L) +QL.

For L > 0 we have

d

dt
L < f(0)L − (1 + L)g(L) +QL

Lg(L)>0
< L(f(0) − g(L)

L
+Q).

Because of our assumption f(0) < g′(0)−Q we have for any ε ∈ (0, g′(0)−Q− f(0)) the
stronger inequality

f(0) < g′(0)−Q− ε. (5.9)
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Since limL→0
g(L)
L

= g′(0) there exists some η > 0 such that

|g(L)
L
− g′(0)| < ε ∀ 0 < L < η. (5.10)

We can now conclude that

f(0)− g(L)

L
+Q

(5.9)
< g′(0)− g(L)

L
− ε

(5.10)
< 0 ∀ 0 < L < η (5.11)

=⇒ d

dt
L < 0 ∀ 0 < L < η.

Therefore, if there is some t0 with L(t0) ≤ η, then L(t) ≤ η ∀ t ≥ t0 and
d
dt
L < 0

=⇒ lim
t−→∞

L(t) = 0.

On this basis, we can further conclude that

d

dt
N ≤ N(f(0) − g(L)

L
)

(5.11)
< 0 ∀ t ≥ t0.

Therefore limt−→∞ N(t) = 0. Finally, consider the equation d
dt
P = P (g(L) − Q), since

L(t)→ 0 and g(0) = 0 there is some tω such that

d

dt
P < 0 ∀ t > tω

=⇒ lim
t→∞

P (t) = 0.

This proves the proposition.

The condition Q + R < S is possible with isoclines as shown in Figures 5.1b and
5.1c. Examples of trajectories converging to the origin are shown in Figures 5.3–5.5. The
numerical simulations of the trajectories in these figures were done using Mathematica
with the built-in high order adaptive step size procedure (the accuracy goal had to be set
higher than the default value to avoid numerical problems close to the origin).

5.5 Discussion

We saw that the equilibrium (0, 0) can behave in several ways depending on parameter
values. The following sequence of figures illustrates these behaviors by steadily increasing
parameter S while keeping parameters R and Q at fixed values. Figure 5.2 illustrates
the case for which it is a saddle point. All trajectories converge to the non-trivial stable
equilibrium independently of the initial conditions (this equilibrium is therefore a global
attractor). Freedman & Mathsen (1993) derived for this case conditions that ensure per-
sistence of the predator-prey system. Figure 5.3 shows the case of having two attractive
equilibria, each with its own basin of attraction. The two basins were determined nu-
merically by overlaying the phase space with a small scale grid, taking each grid point as
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N(t)

P(t)

Isop

Ison

Figure 5.2: The non-trivial equilibrium is a global attractor and (0, 0) behaves like
a saddle point, S < Q+R. Parameter values are R = 0.5, Q = 0.79, S = 1.0.

initial value and determining whether the simulation ends in (0, 0) or in the non-trivial
equilibrium. There must be a separatrix between these two basins. Figure 5.4 shows
again a case with two basins of attraction, but the non-trivial equilibrium is now unstable
and we have a stable limit cycle. As was shown in the previous section we cannot use the
Poincaré-Bendixson theorem to prove the existence of this stable limit cycle because the
construction of a positive invariant set would require knowledge of the analytic form of the
separatrix. This figure also shows that the limit cycles will be very sensitive to stochastic
influences: random perturbations to the populations occurring while the cycle is not far
from the separatrix can bring the trajectory into the basin of attraction of (0, 0), thereby
causing extinction. Figure 5.5 shows the case when (0, 0) becomes attractive for all posi-
tive initial conditions except the non-trivial equilibrium itself. There is no formal proof of
this global attractivity, and several trials with Dulac’s criterion failed. Further increase of
parameter S will make the non-trivial equilibrium disappear and (0, 0) becomes (trivially)
globally attractive (Figure 5.1c). The present mathematical analysis establishes that a
general class of ratio-dependent models have well defined dynamics on the axes and at
the origin.

Extinction of one or both populations in predator-prey systems have occupied ecolo-
gists since the classic experiments of Gause (1935), who tried to reproduce in the labora-
tory the cycles predicted by the Lotka-Volterra predator-prey equations. However, instead
of the desired coexistence, the most frequent result was that the populations (Paramecium
sp. preyed upon by Didinium nasutum) went extinct either immediately or after a couple
of oscillations. Other researchers encountered the same problem (e.g. Huffaker (1958),
Luckinbill (1973)). By thickening the medium to reduce mobility of the predator, Luck-
inbill (1973) obtained repeatedly several predator-prey oscillations before extinction and
Veilleux (1979) refined this technique to have finally sustained cycles without extinction.
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Figure 5.3: The non-trivial equilibrium is locally stable, but (0, 0) becomes also
attractive, S > Q + R. The light gray area is the basin of attraction of the non-
trivial equilibrium, the dark gray area is the one of equilibrium (0, 0). Parameter
values are R = 0.5, Q = 0.79, S = 1.66.

He also did extensive experiments for various initial conditions and detected two basins of
attraction (his Figure 11) that are similar to those in our Figure 5.3. Since the classical
predator-prey systems like Lotka-Volterra or more complex ones with logistic growth and
Holling type II functional responses cannot show deterministic extinction, these results
have usually been explained by demographic stochasticity: limit cycles bring the popula-

Figure 5.4: The non-trivial equilibrium is unstable and (0, 0) becomes attractive,
S > Q + R. There are two attractors, a stable limit cycle and (0, 0). Parameter
values are R = 0.5, Q = 0.79, S = 1.78.
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Isop

Ison

P(t)

N(t)

P(t)

Figure 5.5: The equilibrium (0, 0) is a global attractor, S > Q + R. Parameter
values are R = 0.5, Q = 0.79, S = 1.85. There is no formal proof for the global
attractivity.

tions very close to 0 during the cycle and small stochasticities suffice to cause extinction.
The model studied here can explain the extinction as a deterministic result, with no need
for stochasticity. The simultaneous existence of an unstable non-trivial equilibrium and
an attractive trivial equilibrium (0, 0) extends the behaviors of this model from extinc-
tion after one simple oscillation, as briefly described by Arditi & Berryman (1991), to
extinction after a number of oscillations. Furthermore, the technique of thickening the
medium to stabilize the predator-prey interaction (Luckinbill, 1973; Veilleux, 1979) can
be interpreted as reducing the attack rate α (Harrison, 1995) which, in the present ratio-
dependent model, has a stabilizing effect. By varying this parameter, the whole spectrum
of observed behaviors (stable coexistence, sustained oscillations, extinction after several
cycles, immediate extinction) can be predicted, as illustrated by Figures 5.2-5.5.
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Figure 6.1: David Ely Contois (1928–1988)
(Photo courtesy to the Department of Mi-
crobiology, University of Hawaii)

Abstract

Consumption of a resource by an organism is a key process in both microbiology and
population ecology. Recently, there has been a debate in population ecology about the
importance of organism density in functions describing this process. Actually, microbiolo-
gists have had this debate over the last 40 years. Reviewing their principal results I show
that even for the most simple systems there is no unique correct function to describe con-
sumption. Organism density influences consumption to various degrees. I conclude that,
for predictions based on model simulation, one should use a pluralistic approach, work-
ing with different models to identify robust predictions (that is, common to all studied
models) and guide further research to understand model-specific predictions.

La consommation de ressources par des organismes est un processus-clé à la fois en mi-
crobiologie et en ecologie des populations. Un débat récent s’est ouvert en écologie quant
à l’importance de la densité des organismes dans les fonctions décrivant la consommation.
En fait, cette question a également été débattue par les microbiologistes durant les quar-
ante dernières années. Par une revue de leurs principaux résultats, je montre que, même
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pour les systèmes extrêmement simples, il n’existe pas une fonction universelle permet-
tant de décrire correctement la consommation. La densité des organismes influence leur
consommation à différents degrés. Je conclus que, lorsqu’on fait des prédictions fondées
sur des simulations, il est nécessaire d’avoir une approche pluraliste en travaillant avec
plusieurs modèles, de manière à identifier les prédictions robustes (c’est à dire celles qui
sont communes à tous les systèmes étudiés), et à diriger des études spécifiques vers les
points sur lesquels différents modèles font des prédictions divergentes.
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6.1 Introduction

Describing the consumption process in predator-prey interactions is a research topic in
population ecology since the early theoretical works of Lotka and Volterra. The quan-
titative description of this process has faced several questions: does the instantaneous
consumption depend only on food (prey) availability, or also on the consumers (preda-
tors)? What function should be used in mathematical models? How should parameters
for these functions be estimated? In this note I want to draw attention to the work of
microbiologists and its relevance to current debates in population ecology. Microbiologists
have often faced similar problems in describing the growth of bacteria or protozoa on some
substrate. Although hidden behind different names and notations, several mathematical
forms of consumption used in ecology have an equivalent microbiological growth function
(Table 6.1). Most interestingly, there is also a twin (Contois, 1959) to a model that has
aroused a heated debate in ecology: the ratio-dependent model introduced by Arditi &
Ginzburg (1989). I will review in this note the results in microbiology with respect to this
twin model and discuss how they can help to find a consensus in the ecological debate.

The functional response (prey eaten per predator per unit of time, Solomon 1949)
is traditionally considered to be a function of prey abundance only (prey-dependent,
Holling 1959b). However, predator density can also influence individual consumption
rate, an effect that I will call predator dependence. Such predator dependence (usually
a decreasing functional response with increasing consumer density) has been observed
in many vertebrate and invertebrate species (reviews in Hassell 1978 and Sutherland
1996). A particularly simple way to include predator dependence has been proposed in
the ratio-dependent model where the functional response depends on the ratio prey den-
sity per predator density. This approach naturally predicts the experimentally observed
decreasing feeding rates with increasing predator densities and the positive correlations
between population abundances of producers and consumers observed along gradients of
productivity (see Arditi & Ginzburg 1989 and the review in Pimm 1991, p. 290). De-
spite this empirical evidence supporting it, there is an on-going debate about the validity
of the ratio-dependent approach (Abrams, 1994; Gleeson, 1994; Akçakaya et al., 1995;
Abrams, 1997). The particular ratio-dependent growth function introduced in microbiol-
ogy much earlier by Contois (1959) has served there as an alternative to the well known
(prey-dependent) growth function of Monod (1942), a twin to the popular Holling type II
functional response (Table 6.1). Microbiologists have worked during the last 40 years with
Contois’ function, compared it to others or elaborated it further. I have followed cita-
tions of Contois’ paper during this period of time and I will highlight the results that are
relevant for the on-going ecological debate. Brackets will indicate in this review parallels
and similar concepts in predator-prey theory.

6.2 A short historical perspective

The introduction of Monod’s growth function in 1942,

g(s) = µmax
s

Ks + s
, (6.1)
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(parameters are explained in Table 6.1) together with its mathematical handyness and
strong experimental and theoretical/methodological support, was a major breakthrough in
the mathematical description of bacterial growth. Microbiologists have applied Monod’s
model to the description of monospecific organisms growing on a homogeneous substrate
in batch and chemostat cultures (reviews in Jannasch & Egli (1993) and Fredrickson
(1977)). These chemostats can be described by:

ds

dt
= D(s0 − s)− Y g(s)x

dx

dt
= g(s)x−D(x − x0) (6.2)

with yield Y , dilution rateD, inflowing substrate concentration s0, and inflowing organism
concentration x0 (usually equal to 0). The last three parameters can be controlled entirely
by the researcher. [These equations correspond to predator-prey equations with constant
prey immigration. However, there is a subtle difference between microbiological and
ecological modeling: while microbiologists start with the growth function (ecologists call
it numerical response) and consider the substrate uptake function to be proportional to it
(yield Y ), ecologists often start with the functional response and consider the numerical
response to be proportional to the functional response (with conversion efficiency e = 1/Y ,
see equations 6.2 and 6.4 below). This difference is nevertheless of little importance for
the qualitative results that will be discussed below.]

Table 6.1: References to the same model in ecology and microbiology. s is prey
density or substrate concentration, x is predator density or density of organism that
grows on s, a is predator attack rate, h is handling time, µmax is the maximum
growth rate, Ks the Michaelis-Menten or half saturation constant, α total searching
efficiency and c,m are empirical positive constants.

functional response reference in reference in
or growth rate ecology microbiology{

as s ≤ sb
asm s ≥ sb

Holling (1959) I
with upper limit

Blackman (1905)

as
1+ahs

= µmax
s

Ks+s
Holling (1959) II Monod (1942)

a(1− e−cs) Ivlev (1961) Teissier (1936)
asm

1+ahsm Real (1977) Moser (1958)
αs/x

1+αhs/x
= αs

x+αhs
Arditi & Ginzburg Contois (1959)

(1989)
µmax

s
Ks+s

1
x

Hassell & Varley Ashby (1976)

(1972) (special case)

Despite its initial success, there were experimental results that could not be explained
with Monod’s function. At first, these were attributed to apparatus effects such as incom-
plete mixing or growth on chemostat walls (e.g., Herbert et al. 1956). Contois (1959) was
the first to suggest and to present experimental results that the half saturation ‘constant’
Ks is in fact not a constant (estimates of this ‘constant’ varied up to three orders of
magnitude, see Jannasch & Egli 1993) but that it is proportional to inflowing substrate
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concentration, Ks = ks0. Together with the occurrence of mass balance (ds
dt
+ Y dx

dt
= 0 in

system (6.2), which suggests the relation (x− x0) = x = Y (s0 − s)) model (6.1) changes
to

g(s, x) =
µmaxs

k(x/Y + s) + s
=

µmaxs

(k/Y )x+ (k + 1)s
=

µmaxs/x

(k/Y ) + (k + 1)s/x
(6.3)

which is a particular case of a growth function that depends on the ratio substrate per
organism s/x.

Curds & Cockburn (1968) gathered experimental evidence that the growth rate of
protozoa feeding on bacteria is a decreasing function of the protozoan concentration.
[The same phenomenon in ecology is what I termed predator dependence]. This is in
contrast to Monod’s function which predicts that the growth rate should be independent
of organism concentration. This negative dependence of the growth rate on organism
concentration was also confirmed by Aiba et al. (1968), Fayyaz et al. (1971) and Wilhelm
(1993), and was usually explained as the result of accumulation of metabolic byproducts
that inhibit growth.

Monod’s function (6.2) also predicts that effluent substrate concentration in chemo-
stats should only depend on dilution rate D and be independent of influent substrate
concentration s0. [This is equivalent to the vertical predator isocline in Lotka-Volterra or
Rosenzweig-MacArthur predator-prey systems; Figure 6.2]. This prediction was tested by
varying dilution rates and influent substrate concentration, letting the chemostat reach
steady state and measuring then effluent substrate concentration s. Monod’s prediction
was confirmed for pure cultures growing on glucose (Grady Jr. et al., 1972), but the
results consistently diverged from this prediction when working with mixed cultures (e.g.,
in wastewater treatment or fermentation processes) (Grady Jr. et al., 1972; Grady Jr. &
Williams, 1975; Elmaleh & Ben Aim, 1976; Daigger & Grady Jr., 1977). In the latter,
the outflowing substrate concentration was proportional to inflowing concentration, as
predicted from the chemostat equations (6.2) with Contois’ function (6.3). [It corresponds
in ecology to the prediction that the prey equilibrium in a ratio-dependent predator-prey
system is proportional to prey carrying capacity].

The first approach to reconcile theory and experiment was to introduce intermediate
models that contain both Monod’s and Contois’ functions as special cases, e.g., Roques
et al. (1982) and Borja et al. (1995),

g(s, x) =
µs

Ks + s+ cx
.

[This form was introduced independently in ecology by DeAngelis et al. (1975) and by
Beddington (1975).] Kargi & Shuler (1979) proposed another intermediate function that
attempted to unify Monod’s, Contois’, Teissier’s and Moser’s growth functions in the
context of chemostats. However, experimentalists rarely use these intermediate functions
because of the effort required to estimate the additional parameter, while theoreticians do
not like them because of the considerably more complicated analytical expressions. [The
DeAngelis-Beddington function encounters the same fate in ecology.]

The second approach was to confront data directly with different functional forms of
the growth rate, by fitting either the dynamic model (6.2) to time series data of substrate
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and organism abundances, or by fitting direct measurements of the growth rate as a
function of organism and substrate. Model selection was then based on the goodness-of-
fit criterion. Table 6.2 lists these studies together with the tested models (the best fitting
model in capitals). Often Contois’ function fitted best, but the differences in goodness-of-
fit were usually small. In an interesting application of catastrophe theory to the analysis
of a protozoan system Bazin & Saunders (1978) found that, if the ratio prey per predator
is taken as the critical variable, then “a comparatively simple mechanism can account for
the observed behaviour”.

In summary, the experimental results illustrate that Contois’ model was successfully
used in the context of mixed cultures on multicomponent substrates such as wastewater
treatment, fermentation processes or biogas production from manure. While most of its
support is empirical, Contois’ equation has also been derived by mechanistic reasoning
(Fujimoto, 1963; Characklis, 1978) based on enzyme kinetics or saturation kinetics applied
to mass transfer limited growth. The empirical evidence suggests a mixed result: Con-
tois’ model has only been contradicted by experimental results for monospecific cultures
growing on pure medium. In all other cases (mixed medium or several species/strains
present) it was rather Monod’s model that should have been rejected. [Similarly in ecol-
ogy, where the particular predictions of prey-dependent food chains could only be found
in protozoan laboratory systems with pure strains for prey and predator species (Kaun-
zinger & Morin, 1998)]. Monod’s function remained nevertheless the predominant one in
the microbiological literature (e.g., Barford & Hall 1978; Jannasch & Egli 1993). Why
so? I think this is due mainly to historical reasons (Monod published before Contois and
he is by far a more influential biologist), but the current teaching of microbial modeling
also bears its share for generally presenting Monod’s model as the basic model, without
mentioning alternatives. [In the same way, introductory ecology books only mention the
prey-dependent Holling type I, II and III models, rarely do they present any alternative
functions]. Modeling efforts often start with Monod’s model and stop upon obtaining a
reasonable fit, without testing whether an alternative model can explain the results as
well or better (the papers cited in Table 6.2 show that most consumption functions fit
qualitatively correctly to the experimental data). Like a vicious circle, Monod’s model
confirms itself without giving another model the chance to be tested as well.

6.3 Lessons for ecology

Microbiological experiments are usually done in well controlled laboratory situations,
following the observed processes with precise measurement techniques. In contrast, field
ecology has to cope with various stochastic influences and unprecise census techniques.
Therefore, empirical validation of a model from data is higher valued in microbiology
than in ecology where model rejection by reason of data incompatibility is rare. However,
Table 6.2 also lists results where several growth functions fitted equally well to the same
(microbiological) data. Therefore, as a first lesson, if model selection based on goodness-of-
fit is ambiguous even with microbiological data, then model selection based on ecological
field data cannot be expected to be any better. I would speculate that this is one of the
reasons why many ecologists consider mechanistic underpinning an essential part for the
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Table 6.2: Collection of studies that compared Contois’ function quantitatively with
other functions (1-4, the tested models are noted in the third column with the best
fitting model, if there was one, in capitals) or studies that did a simple model
validation with Contois’ function (5-12). References are: (1) Chiu et al. (1972), (2)
Morrison et al. (1987), (3) Dercová et al. (1989), (4) Wilhelm (1993), (5) Fujimoto
(1963), (6) Goma & Ribot (1978), (7) Kristiansen & Sinclair (1979), (8) Pareilleux
& Chaubet (1980), (9) Lequerica et al. (1984), (10) Tijero et al. (1989), (11) Bala
& Satter (1990), (12) Ghaly & Echiegu (1993), (13) Benitez et al. (1997).

ref. studied system tested functions
(1) microbial sewage Moser, Monod,

Contois
(2) nutrient limited phytoplankton growth Monod, Con-

tois, logistic
(3) growth and glucose consumption of yeast Contois,

Monod
(4) protozoan feeding rate on bacteria Contois, Monod

and 9 others �

(5) bacterial growth on yeast
(6) hydrocarbon fermentation (with Contois’

function at low substrate concentrations, a
modified one at higher concentrations)

(7) production of citric acid in single stage con-
tinuous culture

(8) aerobic cultures of apple fruit cells
(9) anaerobic fermentation of rice straw
(10) anaerobic digestion of glucose and sucrose
(11) substrate degradation and biogas production

from cattle waste
(12) continuous flow no-mix anerobic reactor of

daily manure
(13) aerobic degradation of olive mill wastewaters
�best fits were obtained with functions that are sigmoid with respect to
substrate concentration, either Contois or Monod type

validity of a model, even though the models, by their very simplicity, cannot be much
more than a phenomenological account of the observed biological processes. Furthermore,
“one scientists’ mechanism is another scientists’ phenomenon” (Pimm, 1991). This quote
best summarizes that the very definition of mechanistic is controversial and ‘mechanisms’
are rather a methodological support than a true representation of what is happening in a
population. Ratio dependence was also introduced as an empirical way to include predator
dependence, only recently have mechanistic derivations been developed (Poggiale et al.,
1998; Cosner et al., 1999).

Let us now interpret the ecological meaning of the cited results in microbiology. The
most often tested prediction of Monod’s approach has been that the effluent substrate
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concentration in chemostats should be independent of influent substrate concentration.
This prediction is equivalent to the one that in predator-prey systems with prey-dependent
functional response G(s),

ds

dt
= r(1− s

K
)s−G(s)x

dx

dt
= eG(s)x− µx, (6.4)

the equilibrium prey-density is independent of carrying capacity K (that takes the role of
inflowing substrate concentration) and that the predator isocline is vertical (as in Lotka-
Volterra or Rosenzweig-MacArthur predator-prey systems). See Figure 6.2a and b for
examples in chemostats or predator-prey systems. This prediction from Monod’s func-
tion has been confirmed only in the case of growth of a single organism type on a single
substrate within the constant environment of chemostat or batch cultures. Every devia-
tion from these conditions leads to effluent substrate concentration being proportional to
inflowing concentration. This result can only be explained with a slanted predator isocline
(see Figure 6.2c to f), and it is also an essential prediction of the ratio-dependent model.
The second series of results in batch and continuous cultures shows that the growth func-
tion is a decreasing function of predator density whenever heterogeneities occur either
in consumer species composition or in the substrate, again suggesting that the predator
isocline should be slanted. Such a slanted predator isocline seems to be the rule rather
than the exception and ratio-dependence with its isocline through the origin (Figure 6.2e
and f) can be considered a parsimonious way to model it.

The consideration of a vertical predator isocline lies also at the base of two so-called
paradoxes: the paradox of enrichment (Rosenzweig, 1971) that predicts that richer sys-
tems (high K) should be less stable, and the paradox of biological control (Arditi &
Berryman, 1991) that predicts that biologically controlled pests should have unstable
dynamics. These paradoxes are often resolved by creating more complex models with
additional state variables or additional parameters (e.g., McCauley et al. (1988), Scheffer
& de Boer (1995)). These additions rapidly lead to analytically intractable models and
discourage any further investigation. Instead of fixing the theory in an ad hoc manner to
accommodate to particular cases, we might alternatively ask whether the ‘basic model’
itself might have flaws and start in a modeling framework that inherently has a slanted
predator isocline. After all, “modeling philosophies . . . should be treated in the same way
as models – retained only as long as they assist progress” (Nisbet & Gurney, 1982).

To continue this line of thought, consider the ecological equivalent to the cited finding
that the growth function decreases with increasing consumer density (i.e., the question
of predator dependence). There is ample empirical evidence that interference between
foraging predators (a likely cause for predator dependence) is a frequent phenomenon in
invertebrates (review in Hassell 1978) and in vertebrates (review in Sutherland 1996).
However, this reported interference usually just triggers the remark that a functional
response of the Hassell-Varley type (Hassell, 1978) would be most appropriate to model
the system. However, due to a lack of experimental data to parameterize this model
and because of analytical reasons, one is compelled to return to simple prey-dependent
types that do not take this predator dependence into account. Ratio dependence offers a
simple theoretical framework that inherently contains predator dependence either for food
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Figure 6.2: Typical isoclines in chemostats (left) and predator-prey sytems (right)
with prey-dependent Holling II growth functions (a,b), DeAngelis-Beddington type
growth functions (c,d) and ratio-dependent growth functions (e,f). Prey isoclines
are long-short dashed, predator isoclines are short dashed. Straight lines represent
typical trajectories.

chains (Arditi & Ginzburg, 1989) or for whole food webs (Arditi & Michalski, 1995), while
keeping models as simple and as tractable as those coming from the modeling frameworks
based on Holling type functional responses.

Some authors continue arguing that the ‘recent focus on ratio dependence is unfor-
tunate’ (Abrams, 1997; Murdoch et al., 1998), deflecting attention from more general
forms of predator dependence. I think that, on the contrary, ratio-dependent theory has
enhanced the status of predator dependence. It provides a simple mathematical frame-
work to test whether strong predator dependence changes predictions that were originally
derived from prey-dependent concepts, and to guide further research when these predic-
tions are not ‘robust’ against predator dependence such as the two paradoxes mentioned
above. While modeling frameworks based on prey-dependent interactions can be linked to
top-down mechanisms (Arditi & Ginzburg, 1989) and account for cycling systems (Rosen-
zweig, 1971), the ratio-dependent approach includes elements of top-down and bottom-up
regulation (Arditi & Ginzburg, 1989) and offers the possibilitiy of deterministic extinction
(Jost et al., 1999).

Ecology can profit from all these modeling frameworks. The reviewed results show
that natural systems contain in general predator dependence, but they do not tell which
of the modeling frameworks is a better approximation. Using both and comparing their
predictions can serve to guide further research in case of different predictions, while similar
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predictions give confidence having found ‘robust’ features of the studied systems.
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Abstract

The functional response is a key element in predator-prey models as well as in food
chains and food webs. Classical models consider it as a function of prey abundance only.
However, many mechanisms can lead to predator dependence, and there is increasing
evidence for the importance of this dependence. Identification of the mathematical form
of the functional response from real data is therefore a challenging task. In this paper we
apply model-fitting to test if typical ecological predator-prey time-series data, that contain
both observation error and process error, can give some information about the form of
the functional response. Working with artifical data (for which the functional response
is known) we will show that with moderate noise levels, identification of the model that
generated the data is possible. However, the noise levels prevailing in real ecological time-
series can give rise to wrong identifications. We will also discuss the quality of parameter
estimation by fitting differential equations to this kind of time-series.

La réponse fonctionnelle est un élément clé dans les modèles proie-prédateur, ainsi que
dans les modèles de châınes et de réseaux trophiques. Dans les modèles les plus classiques,
la réponse fonctionnelle dépend uniquement de l’abondance des proies. Toutefois, divers
mécanismes peuvent également faire intervenir l’abondance des prédateurs. Des données
empiriques de plus en plus nombreuses suggèrent que celle-ci joue un rôle primordial. Il
est donc important d’identifier la forme mathématique de la réponse fonctionnelle. Dans
le présent article, nous utilisons les techniques d’ajustement de modèle pour déterminer si
cette identification est possible sur des données écologiques réelles, comportant un ”bruit”
dû aux erreurs de mesure et aux stochaticités environnementales et démographiques. Sur
des données artificielles, créées avec une réponse fonctionnelle connue, nous montrons
qu’avec un ”bruit” modéré l’identification du modèle ayant généré les données est possible.
Toutefois, les niveaux de ”bruit” typiques que l’on rencontre dans les séries temporelles
en écologie peuvent mener à des identifications erronnées. Nous discutons également de la
qualité des estimations de paramètres obtenus par ajustement d’équations différentielles
à de telles séries teporelles.
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7.1 Introduction

Finding the functional relationship between observed data is one of the major tasks in
ecology. Often several functional forms, that are based on different assumptions about
the dominant mechanisms at work, are available. Fitting these functions to the data and
applying goodness-of-fit as a criterion to select the best model is then used to detect the
dominant mechanism for the particular system from which the data were obtained.

One particular application of this concept is to test dynamic predator-prey models
against predator-prey time-series data. Harrison (1995), for example, reanalysed Luckin-
bill’s (1973) classical protozoan data and fitted them to 11 different (continuous) predator-
prey models. He assumed that the data contain only noise due to observation error (mea-
surement error), which leads to fitting the whole trajectory of the predator-prey system
to the time-series (termed observation error fit by Pascual & Kareiva 1996). Unfortu-
nately, his statistical analysis did not take into account the number of parameters. It is
therefore not too surprising that a rather complicated model with 11 parameters fitted
the data best. Carpenter et al. (1994) fitted (discrete) predator-prey models to phyto-
and zooplankton time-series from North American freshwater lakes to test whether the
predation process depends significantly on predator density. Their analysis was designed
to treat data that contain noise due to observation error and noise due to process error
(environmental or demographic stochasticity), fitting such that the prediction one time
step ahead is minimized (termed process error fit by Pascual & Kareiva 1996). To avoid
any assumptions about the presence or absence of higher predation on the predators they
fitted only the prey equation, using the predator data as input. While they took the
number of parameters into account, they did not justify the use of discrete models (with
the time step being the time between measurements) to describe a system showing the
characteristics of a continuous system.

However, does a better fit of one model compared to another one always imply that
its functional form represents the actual processes at work more accurately? There exist,
for example, simple algebraic differential equations that can fit perfectly to any finite
time-series (Rubel, 1981). It can also happen that very different models fit equally well
to the same data (Feller, 1939). A slightly better fit of one of these models could be an
artifact of the time-series being one particular realisation of an ecological process with all
its random influences. Another realisation (replicate) might give a very different result.
Therefore, the reliability of goodness-of-fit to determine the functional form of a process
from time-series data should be tested in advance, e.g., with artifical data for which the
functional form is known.

Carpenter et al. (1994) were aware of this problem and they tested their method
with artificial data that they created with parameters characteristic for their limnological
system. In this article we will perform a similar analysis for a larger range of ecological
systems. We will test whether predator-prey time-series that represent the (continuous)
dynamics of a stable focus contain sufficient information to detect if predator density
influences the predation process strongly enough to influence the dynamics of the system.
Such time-series typically contain noise due to observation error and noise due to process
error. The fitting techniques will include observation error fit (Harrison, 1995) and a
modified process error fit (Carpenter et al., 1994) that predicts s-steps ahead instead of
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simply one-step ahead. The idea is to predict over a time range where non-linear effects
become detectable. The determination of s will be based on the arguments developped
and justified in Ellner & Turchin (1995).

We will work with very simple predator-prey models whose purpose is not to describe
the data perfectly well but rather to describe them in a qualitatively correct manner.
Simplicity in the description of the key processes (growth, death) is essential in models of
more complex food chains or whole food webs, where the number of parameters becomes
a limiting factor for analysis and parametrization. Although such complex models are not
the subject of this article, it is with this purpose in mind that we deliberately consider
simple predator-prey models.

Based on the principles of mass conservation and decomposition of the dynamics of
a population into birth and death processes, the canonical form of such a predator-prey
model is

dN

dt
= f(N)N − g(N,P )P =: FN(N,P )

dP

dt
= eg(N,P )P − µP =: FP(N,P ) (7.1)

where N and P are the abundances of prey and predator respectively, e the conversion
efficiency and µ the death rate of the predator in the absence of prey. The key processes
are the prey growth function f and the link between prey and predator, the functional
response g (prey eaten per predator per unit of time, Solomon 1949). The latter represents
the predation process. We will test if model fitting can reveal whether g is approximately
a function of prey abundance only (g = g(N), as it is the case in traditional functional
response models, e.g., Lotka 1924 or Holling 1959b) or if g also depends significantly on
predator abundance. Such predator dependence influences the stability of predator-prey
systems (DeAngelis et al., 1975; Murdoch & Oaten, 1975) and the response of the prey
equlibrium to an enrichment of the system (Arditi & Ginzburg, 1989). Its detection from
natural predator-prey time series is therefore a challenging task.

Introducing explicit predator dependence, g = g(N,P ), as was done by DeAngelis
et al. (1975), normally increases the complexity of the function g, making it difficult to
compare with the simpler prey-dependent form g = g(N). A special case of a simple
predator-dependent function was suggested by Arditi & Ginzburg (1989), assuming that
g = g(N/P ). Models of this type are equally simple as prey-dependent models and can
therefore be directly compared with them. However, ratio dependence represents only
one particular case of predator dependence, and the only reason to favour it against other
predator-dependent functions is its simplicity. This ratio-dependent functional response,
like other predator-dependent functional responses, but in contrast to prey-dependent
functional responses, leads to the observed correlated equilibria of prey and predators
along a gradient of richness (Arditi & Ginzburg, 1989; Mazumder, 1994; McCarthy et al.,
1995). The issue of ratio-dependence is currently subject to some debate (Abrams, 1994;
Sarnelle, 1994; Akçakaya et al., 1995; Abrams, 1997; Bohannan & Lenski, 1997; Hansson
et al., 1998).

In this article, we do not address the question of the ecological significance of one or the
other model. We will merely attempt to answer the question of whether typical predator-
prey time-series can help evaluating the importance of predator dependence. In particular,
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we want to analyse the dynamics of predator-prey systems with low initial conditions and
whose trajectory reaches a stable, non-trivial equilibrium (both populations coexisting)
after one or two large amplitude oscillations. Such dynamics are considered characteristic
for seasonal dynamics of phyto- and zooplankton in freshwater lakes of the temperate
zone (Sommer et al., 1986) or for chemostat and batch culture experiments with protozoa
(another source of published time-series data, e.g., Gause et al. 1936, Luckinbill 1973).
Typically, such time-series are short (about 20 data points per season in lakes, 10-50
data points with protozoa), and may have considerable observation and process error.
Differential equations seem the adequate tool to describe these systems since there are
overlapping generations and large numbers of individuals. Using a simulation approach,
we will generate artificial time-series (termed pseudo-data by May 1989) with a prey-
dependent and a ratio-dependent functional response of the same simplicity to which we
will add process and observation error. Regression techniques will then be applied and
we will test whether the best-fitting model is indeed the one that created the data. A by-
product of this kind of identification is the computation of the actual model parameters.
We will analyze the quality of these estimates (value, standard deviation) to test the
power of the regression method for parameter estimation.

7.2 The alternative models

Building on the canonical form (7.1) we use a standard logistic growth for the reproduction
function f ,

f(N) = r(1− N

K
),

with maximum growth rate r and carrying capacity K. Two models are chosen for the
functional response, a prey-dependent one and a predator-dependent one, that have both
the same number of parameters. We chose the classical Holling type II model on the one
side and a ratio-dependent model (Arditi & Michalski, 1995) on the other side,

aN

1 + ahN
←− g(N,P ) −→ αN/P

1 + αhN/P
,

where a is the searching efficiency, h the handling time and α some kind of ‘total’ predator
searching efficiency. We selected the Holling type II form rather than equally plausible
alternatives such as the Ivlev functional response (Ivlev, 1961) simply because it is more
widely used in ecology as well as in microbiology (Monod, 1942). The particular form of
the predator-dependent functional response closely resembles the Holling type II function,
thus making direct comparison between the two models possible. This form also tends to
be regarded as the standard form of a ratio-dependent functional response in mathematical
studies (Freedman & Mathsen, 1993; Cosner, 1996; Kuang & Beretta, 1998) and it is
known in the microbiological literature as Contois’ model (Contois, 1959).

Despite their structural difference, the two models can produce very similar temporal
dynamics. This is illustrated in Figure 7.1: time-series were created with both models
(with parameters corresponding to a stable focus), adding stochastic noise and observation
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error, and then fitting both models crosswise to these time-series (see the next section for
the details of these methods). It can be seen that both models fit very well to the data
created by the other model. A good fit alone is therefore a poor indicator whether the
used model correctly describes the processes that generated the data.

(a) (b)

timetime

ab
un

da
nc

es

ab
un

da
nc

es
Figure 7.1: Examples illustrating that each model (the prey-dependent and the ratio-
dependent one) can approximate satisfactorily time series data that were created by
the other model. (a) Ratio-dependent model fitted to prey-dependent data. (b)
Prey-dependent model fitted to ratio-dependent data. Diamonds represent the prey
time-series and stars the predator time-series. See the text for further details.

7.3 Materials and methods

7.3.1 Artificial time-series

For this analysis to be valid for many different predator-prey systems, the pseudo-data
must be generated with widely differing parameter values. Possible parameter values
must abide to ecological and dynamical constraints. Such a constraint applies to the
conversion efficiency e that should be within the interval (0, 1) if abundances of both prey
and predator are measured in biomass (the usual case in freshwater studies). Parameters
K and h can be chosen arbitrarily since they depend entirely on the time and weight
scales that are used. Given these three parameters, we can find intervals for the remaining
parameters by the requirement defined above: existence of a non-trivial stable equilibrium
reached with oscillations. Within these intervals, the parameters are chosen randomly.
Initial values of prey and predator abundances are then chosen two to ten times below
their equilibrium abundances. Such a randomly created parameter set (with initial values)
is retained only if the following properties are respected: (1) prey and predator equilibria
do not differ by more than a factor of 100, and (2) the deterministic trajectories of prey
and predator show at least two distinct oscillations before reaching the equilibrium. The
simulation time T is set in order to have these two oscillations. These final criteria
assure an at least twofold variation in predator abundance (that is essential for model
identification) and keep prey and predator abundances on comparable scales (see Figure
7.1 for two examples).

For each functional response, 20 such parameter sets were created. In analogy with
the replicates of a typical ecological experiment, we created with each parameter set 5
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replicate time-series by numerical integration of the stochastic version of the differential
equations (7.1),

Nt+∆t = Nt + FN(Nt, Pt)∆t+ σpNtεN,t∆t

Pt+∆t = Pt + FP (Nt, Pt)∆t+ σpPtεP,t∆t, (7.2)

with εN,t and εP,t being random normal variates with mean zero and variance one, ∆t :=
T/500 and σp the process error level. This stochastic process was sampled at 20 equal time
steps and a lognormally distributed observation error (with coefficient of variation CV )
was incorporated by multiplication with the exponential of a normal variate with mean
zero and variance log(1 + CV 2). With this formulation, both process error and observa-
tion error are of a multiplicative type as suggested to be typical for natural populations
(Hilborn & Mangel, 1997; Carpenter et al., 1994). Time-series with two noise levels were
created, with CV and σp both set to 0.05 and to 0.1. The first case is comparable to
protozoan laboratory data and the latter to data from freshwater plankton experiments
(Carpenter et al., 1994). This makes a total of 400 data sets (2 models * 20 parameter
sets * 5 replicates * 2 noise levels).

7.3.2 Error functions

The key part in fitting a model to data is the formulation of the function to be minimized.
Depending on the stochastic elements in the data (process and/or observation error), the
error function must be chosen accordingly. Ecological data have usually both types of
error. However, statistical methods that take both into account are rare and little is
known in the case of nonlinear regression. The usual practical solution is therefore to
neglect one of the errors and to develop the error function for the other (Pascual &
Kareiva, 1996). We will follow this approach, but also test two error functions that claim
to be able to take both errors into account.

For ease of notation, consider a simple autonomous differential equation ẏ = f(y) with
time-series data (ti, Yi)1≤i≤m, where ti is the time at which the population y is observed
to have density Yi, and m is the number of data points. [For predator-prey models y has
to be replaced by the pair (N,P ) and adaptations for this case that are not obvious in
the development below will be noted in brackets]. Let y(ti) be the deterministic solution
of the differential equation at time ti and ŷi the (unknown) real population density at
time ti. If the data have only observation error, then there is only one initial condition,
y(t0) = ŷ0, that is treated as a free parameter. If there is only process error, then the
initial conditions are different for each consecutive data point and are defined as the data
value s steps previously, y(ti−s) = Yi−s (see Figure 7.2). s is chosen as the smallest value
for which the autocorrelation in the time-series is below 0.5. Ellner & Turchin (1995)
had developped this method to choose s on empirical grounds and argued that nonlinear
patterns can be detected more reliably with this s-step ahead prediction than by the
traditional one-step ahead prediction. In our artificial data, s always took the value 2.
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With these notations, the process can be written as

observation error only process error only
ŷi = y(ti, θ) ŷi = y(ti, θ) ν(∆ti, f, θ)
Yi = ŷiω Yi = ŷi
y(t0) = ŷ0 y(ti−s) = Yi−s

where θ is the vector of model parameters. We will suppose that the observation error
ω in the densities is of a multiplicative type (lognormal), as used in Carpenter et al.
(1994) and Hilborn & Mangel (1997), with a constant coefficient of variation CVω. The
(accumulated) process error νi depends in general on the time interval ∆ti = ti − ti−1

and on the dynamics f over this interval. However, for many ecological time-series the
interval ∆ti is constant and we further simplify by ignoring the effect of the dynamics of f .
Thus, process error ν ≡ νi will be considered to be a lognormal variate with constant CVν

(Carpenter et al., 1994). These two lognormal errors are considered to be exponentials of
two normal variates with expectation 0 and variance σ2

k = log(CV 2
k + 1), k = ω, ν.

Observation error fit

Process error fit

t

t

(a)

(b)

t4

y t4)

Y4

t4

y t4)

Y4

Figure 7.2: The fitting procedure changes with different types of error in the data.
(a) Observation error only. The whole trajectory is fitted to the data, treating initial
conditions as parameters. (b) Process error only. The best approximation is to fit
from one point to the next (one-step ahead prediction).

The log-transformed data Yi are therefore Gaussian with expectation log(ŷi) and stan-
dard deviation σk. We define the residuals

di,k = log(Yi)− log(yk(ti)), k = ω, ν. (7.3)
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The index k refers to the values yk(ti) which are computed with different initial conditions
according to the type of error. [Note that the residual di,k is a vector for vector-valued
yk(ti)]. Assuming now only one type of error, the error function to be minimized becomes:

X2
k =

m∑
i=1

d2
i,k

σ2
k

, k = ω, ν. (7.4)

Figure 7.2 shows the difference between the error functions assuming observation error
ω or process error ν only. It is visible on this figure that in the case of process error,
the first summand (i = 1) is 0. Minimizing equation (7.4) is equivalent to a maximum
likelihood approach (Press et al., 1992) and since σk is a constant it is also equivalent to
the traditional least-squares regression.

Notice that the expectations of ν and ω are not 1 but exp(σ2
k/2) =

√
CV 2

k + 1, k =
ω, ν. This may seem strange on first view, but in fact allows the simple formulation of
the residuals as the difference of the log’s. Had we E(ν) = E(ω) = 1, then we would have
to add σ2

k/2 to the residual (7.3) for it to have expectation 0 (Hilborn & Mangel 1997,
personal communication with Ray Hilborn). The problem is purely technical: one may
prefer the lognormal variate to have expectation 1 or its log-transform to have expectation
0. With real data one does not know which assumption is more reasonable. Furthermore,
since the σk’s are often not known very precisely, there is a risk of doing more harm than
good by adding the term σ2

k/2 to the residuals di,k. Therefore, one usually finds in the
statistical literature the difference of the log’s only (Ratkowsky, 1983; Hilborn & Mangel,
1997), and we will follow this safer approach.

If both types of errors are present simultaneously, y(ti) also depends on the observation
error in the data point s steps previously, Yi−s. The statistical literature proposes several
solutions on how to treat this problem of ‘errors-in-variables’. Clutton-Brock (1967)
suggested to use weighted loss functions with the weights taking account of the uncertainty
in Yi−s:

CB1 =
m∑

i=1+s

(y(ti)− Yi)
2

wi

with

wi = η2
ω,i + η2

ω,i−1

(
dy(ti)

dYi−s

)2

, (7.5)

The last term in this equation, dy(ti)/dYi−s, is the derivative of the predicted abundance
y(ti) with respect to the initial condition y(ti−s) = Yi−s. [Note that for y(ti) = (Ni, Pi),
the weight for state variable yj(ti) is calculated by

ωj,i = η2
ω,j,i + (∂Ni−syj(ti), ∂Pi−syj(ti))

[
η2
ω,1,i−s 0
0 η2

ω,2,i−s

](
∂Ni−syj(ti)
∂Pi−syj(ti)

)

and adapted similarly for higher dimensional state variables]. The standard deviation of
the observation error, ηω,i, must be known in advance (by multiple samples) and indepen-
dently of the process error. Here, we assume that the observation error has a constant CVω
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known from replicate measurements. The standard deviation can thus be approximated
by ηω,i = CVω Yi.

Another loss function, similar to the negative log-likelihood, was also introduced by
Clutton-Brock (1967),

CB2 =
m∑

i=i+s

0.5

(
(y(ti) − Yi)

2

wi

+ log(2πwi)

)

with wi defined as in equation (7.5).

Note that in error functions CB1 and CB2 the residual is no longer the difference of the
log’s as suggested with the lognormal error type. However, the property of the lognormal
error, that the standard deviation is proportional to population size, is preserved. We
have also tested the lognormal versions of these equations, as proposed by Clutton-Brock
(1967) and by Carpenter et al. (1994), but these functions converged very often to strange
solutions, maximizing the dependence on the initial condition (dy(ti)/dYi−s) rather than
minimizing the residuals. They also converged much slower. Using functions CB1 and
CB2 thus simplifies the regression task without losing much generality with respect to
the error type.

In sum, if the source of error in the data is assumed to be observation error only, the
function X2

ω must be used as a regression criterion. If it is thought that process error only
is present, the criterion X2

ν must be used. And if both errors are present simultaneously,
CB1 or CB2 can be used. In our study of identifiability with artificial data, we will
consider all situations and we will assess empirically the discriminative performance of all
four error functions.

7.3.3 Model selection

The quality of adjustment of models to data is assessed with the familiar sum of squares
X2 (7.4). This selection criterion is identical to the regression criterion when regression
has been done using X2

ω or X2
ν . The error functions CB1 and CB2 cannot be used di-

rectly for model selection because the estimators use weightings that differ among models
(Carpenter et al., 1994). We based therefore model selection for all error functions on the
sum of squared residuals of log-transformed values (7.4).

To quantify the identifiability of the models, we calculate the ratio X2
c /X

2
f for each

time-series with X2
c being the sum of squares after fitting the correct model and X2

f the
sum of squares after fitting the false model (i.e., a ratio smaller than one indicates that the
correct model has been identified). Plotting the cumulative distributions of these ratios
gives a visual representation of the selection performance of the different types of error
functions.

If the model is linear in the parameters, then the probability distribution of X2 near
the optimal parameter values is the chi-square distribution with DF = 2m − p degrees
of freedom (p being the number of parameters). A convenient way to calculate this
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probability is to use the incomplete Gamma function Γ (Press et al., 1992):

@ = Γ

(
X2

2
,
DF

2

)
. (7.6)

@ is a measure of the improbability that this fit was obtained by chance. Although this
equation gives the correct improbability only for models that are linear in the parameters,
it is quite common to use it also with nonlinear models (Press et al., 1992). However, in
this case, @ is only a measure of this improbability. The actual values of @ obtained after
fitting our models to the artificial data sets will give an indication of the threshold value
below which fits to real data should be rejected because the improbability that the fit was
obtained by chance becomes too low.

7.3.4 Parameter estimation

Before trying to fit our six-parameter models, it should be verified that the models are well
defined, in the sense that parameters are uniquely identifiable (Walter, 1987). Based on a
Taylor-series expansion approach, this problem can be reduced to the algebraic problem
of solving six equations for six unknowns. It can be shown (C.2) that, in both models,
the six parameters are indeed uniquely identifiable if the state variables are known with
arbitrary precision and arbitrary resolution in time.

Since system stability is of much interest in ecosystems (return time after perturba-
tions, persistence in stochastic environments), the local stability of the non-trivial equilib-
rium will be used as an overall measure of the correct estimation of the entire parameter
set. Stability is measured by −Re(λ), with λ being the dominant eigenvalue of the com-
munity matrix (the Jacobian at the equilibrium point). This value has been calculated
analytically (to reduce numerical roundoff errors). We will plot the cumulative distribu-
tion of the ratios, |Re(λe)/Re(λc)|, with λe the dominant eigenvalue for the estimated
parameters, and λc the dominant eigenvalue for the correct parameters. The steepness
of this curve indicates the variation in the estimation of stability and, if the curve passes
through the point (1.0, 0.5), then there is no deviation from the expected median.

The quality of the individual parameter estimates will be assessed by computing their
coefficients of variation from the fits to each set of five replicated time-series. Averaging
these CV ’s over all parameter sets will give a general idea of the quality to be expected
with this type of fitting and data.

7.3.5 Algorithmic details

There does not exist much customizable software that allows fitting differential equations
to data. Fitting and visualization are usually separate steps in most software, which
further slows down the fitting process. Therefore we programmed the whole procedure
directly in C++ to create an application that allows immediate visual control of the fitted
model. This proved to be an indispensable tool to analyze large numbers of data sets.
(The software can be obtained from the first author upon request, and it requires a Power
Macintosh.)



106 Identifying predator-prey models (PhD Thesis) C. Jost

In a first step, the time-series data were used to determine upper and lower bounds
of the parameters. These bounds were found by first computing a rough estimate of each
parameter. For r, a (α), µ and h, this was done by an analogy with exponential growth:

ẏ = ry ⇔ r =
log(y(ti+1))− log(y(ti))

ti+1 − ti
.

For example, a rough estimate of the maximal prey growth rate r was obtained by calcu-
lating

max
1≤i≤m−1

{
log(Ni+1)− log(Ni)

ti+1 − ti

}
.

The parameterK was roughly estimated as the maximal prey abundance. These estimates
were then multiplied by some constants to get upper and lower bounds. The constants
were calibrated with the artificial data sets in such way that the intervals contained the
real parameters that had generated all these data sets. e was restricted to the ecologically
reasonable interval (0, 1).

In a second step, a genetic algorithm (GAlib 1.4.2 from http://lancet.mit.edu/ga/)
was used to search within these bounds, with population size 50, mutation rate 0.01,
crossover rate 0.1 and 400–600 generations. In this and the following step the solutions
of the ordinary differential equations needed to calculate X2

k were simulated with the
adaptive stepsize fifth-order Runge-Kutta method odeint from Press et al. (1992).

In a third and final step, starting from the parameter values found by the genetic
algorithm, the fitting was completed by using repeatedly a Levenberg-Marquardt method
and the downhill simplex method of Nelder and Mead combined with simulated annealing
(routines mrqmin and amotsa from Press et al. 1992) until the fit could not be improved
any further. The Levenberg-Marquardt method requires at each step the simulation of a
system of 20 (or more) coupled ordinary differential equations (see Appendix 7.A). The
parameters were forced to remain within the calculated intervals during the optimization
(by blocking the parameter in the Levenberg-Marquardt method or by penalizing the
error function in the simplex algorithm, with a penalty that grows exponentially with
increasing distance from the bound).

The stopping criterion for both algorithms was determined dynamically from the data
set: let En be the error at step n (expressions X2

k , CB1 or CB2), θjn the estimate of
parameter j at step n (1 ≤ j ≤ p), and c = max1≤i≤m{Yi} · CV · m · C (C being a
constant, set to 10−8). Then the algorithm was stopped if either

0 ≤ En −En+1

En
≤ c

or

0 ≤ max
1≤i≤p

∣∣∣∣∣θ
j
n − θjn+1

θjn

∣∣∣∣∣ ≤ c

(Seber & Wild, 1989). With simulated annealing, the error En might actually increase at
the beginning of the optimization process. Therefore, this algorithm was not stopped if
the first expression became negative.
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In sum, both models were fitted with each of the four error functions to each of the
400 time-series with the following procedure: (1) Calculate upper and lower bounds for
the parameters, (2) run a genetic algorithm, (3) use alternatingly and repeatedly the
Levenberg-Marquardt method and the simulated annealing simplex algorithm with the
stopping criteria above until the error did not diminish any further.

7.4 Analysis and results

After fitting the correct models to all data sets with low and high noise, we computed the
mean @̄ over all realizations of @ (equation 7.6). When assuming observation error only
(X2

ω, calculated with a total CV = 0.2) this gave an approximate value @̄ ≈ 0.5 − 0.9
for the time-series with high noise. If we assume having process error in the data (X2

ν ,
calculated with a total CV = 0.2), then we obtain @̄ ≈ 0.03− 0.5 for the time-series with
high noise. These values suggest that fits to real data with @-values considerably smaller
than these should be rejected. Interestingly, the values of @ for the ratio-dependent data
were always much higher than those for the prey-dependent data. It seems that process
error of the same level (σp in equations 7.2) adds on average less accumulated process
error in the ratio-dependent model than in the prey-dependent model.

Regarding the numerical efficiency of the algorithms, the Levenberg-Marquardt search
worked fast and efficiently close to the optimum (compared to the simplex algorithm), but
it often failed when the starting values obtained with the genetic algorithm were far from
the optimum. In these cases, the simplex algorithm usually found the basin of attraction
much faster. The combination of both algorithms ensured almost always the convergence
to the optimum.

7.4.1 Model identification

Figure 7.3 shows the cumulative distributions of the ratios X2
c /X

2
f for all error functions

and noise levels. At low noise levels (CV = 0.05, σp = 0.05) we see that error functions
X2

ω, X
2
ν and CB2 led to less than 5% wrong identifications, while CB1 had about 15%

erroneous identifications. Therefore, we did not use the error function CB1 at the higher
noise levels (CV = 0.1, σp = 0.1). At this higher noise, the error function X2

ω still had less
than 5% wrong identifications, while the error function X2

ν had up to 10% and function
CB2 performed even worse. Therefore, we concluded that error functions CB1 and CB2

are not useful for model selection, probably because the function that is minimized and the
model selection criterion are not the same. If we want 95% confidence in the identification
with error function X2

ν , then there can be at most 5% wrong identifications. Estimating
this from Figure 7.3(c) (by drawing a line at the 95% level and projecting the intersection
point with the distribution curve onto the x-axis (point β), then taking the inverse of
this value, 1/β), we obtain the criterion that the ratio of better fit by worse fit should be
smaller than 0.95.
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Figure 7.3: Quantile plots of fitting the models to the artificial data. — — —: error
function X2

ω; ———: error function X2
ν ; - - - - -: error function CB1; – – – –: error

function CB2. X2
c is the error after fitting the correct model and X2

f is the error
after fitting the wrong model. CV is the coefficient of variation of the observation
error and σ is the standard deviation of the process error. The dashed straight lines
in (c) show how the confidence level of 95% for model selection with error function
X2

ν is calculated. See the text for more details.

7.4.2 Parameter estimation

Figure 7.4 shows the sensitivity of all four error functions to variations of one parameter
at a time (fixing the others at the values with which the time-series was created) for a
ratio-dependent data set with high noise (CV = 0.1, σ = 0.1). We see that they are
all quite unbiased with mostly symmetric error functions. Observation error X2

ω gave
always the most narrow function, often asymmetric and the error increasing very fast
with the distance from the true parameter value [the steepest increase occurs if a too
efficient predator (high α and e or low h, µ and r) drives the system to exinction]. This
illustrates why we needed a genetic algorithm to find initial parameter estimates within
the basin of attraction of the optimal parameter values. But once this basin is found,
convergence with the simplex algorithm or the Levenberg-Marquardt method is very fast.
CB1 and CB2 show the flattest error functions, indicating slower convergence rates of the
optimization process. This same picture emerged with other data sets and models.

Comparing directly the dominant eigenvalues of the non-trivial equilibriumwith the es-
timated and the correct parameters, strong differences between the error functions emerge.
Figure 7.5 shows the cumulative distribution functions of the ratios of the dominant eigen-
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Figure 7.4: Four error functions vs. parameter values for a ratio-dependent time-
series with large noise. The curves where shifted vertically to put their minimum all
at the same height. Patterns are the same as in Figure 7.3. Actual parameters are:
r = 1.29, K = 900, α = 4.7, h = 0.172, e = 0.207, µ = 1.01. They are indicated by
an arrow.

values for all estimated parameter sets, error functions and models. The steepness of each
curve is approximately the same, meaning that each error function shows the same vari-
ation in the estimation of local stability, although there seems to be a slightly smaller
variation with ratio-dependent data. With respect to deviation from the expected me-
dian, we see that error function X2

ω (fitting the whole trajectory) performed overall best,
followed by CB2. Error function X2

ν always overestimated stability.

The coefficients of variation CVθ for each parameter, each model and each error func-
tion (computed from the fits to data with high noise only) are shown in Table 7.4.2. The
important point is that these values are generally high (15-90%), indicating that even with
5 replicates, there remains much uncertainty in the estimated parameters. The estimation
of K and r were the most reliable, and all other parameters had CV ’s above 40%.

7.5 Discussion

We addressed in this article the problem of model selection by fitting dynamic models
to predator-prey time-series that contain both observation and process error. Fitting
assuming observation error only (error function X2

ω) allowed for the most reliable model
identification with both noise levels. Figure 7.3 suggests that identification should remain
possible even with noise levels slightly higher than CV = 0.1 and σp = 0.1 or with some
outliers in the data.

Fitting assuming process error (function X2
ν ) leads to much less reliable identification.

Identification worked well with the low noise level. But for the higher noise level, the
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Figure 7.5: Quality of the estimated local stability: cumulative distributions of the
ratios of the real part of the estimated dominant eigenvalue Re(λe) by the real part
of the correct dominant eigenvalue Re(λc). Line patterns are the same as in Figure
7.3.

ratio of the lower error by the larger error should be below 0.95 to have 95% confidence in
the result. Higher noise levels or outliers in the data will further aggravate the reliability
of model selection. The error functions CB1 and CB2 that were supposed to take both
observation and process error into account gave unreliable identification results, probably
because the function that is minimized is not identical to the selection criterion, as this

Table 7.1: The mean coefficients of variation for the fitted parameters and the
mean standard deviations of the estimated dominant eigenvalues, ηλ. All values are
calculated from the results of fitting the data with high observation and process
error (CV = 0.1, σp = 0.1) to the correct model. The first column indicates the
error function that was minimized.

prey-dep. data CVr CVK CVa CVh CVe CVµ ηλ
X2

ω 0.16 0.14 0.43 0.33 0.6 0.52 0.04
X2

ν 0.25 0.22 0.56 0.54 0.78 0.69 0.047
CB2 0.2 0.17 0.57 0.44 0.7 0.62 0.045

ratio-dep. data CVr CFK CVα CVh CVe CVµ ηλ
X2

ω 0.31 0.28 0.7 0.63 0.54 0.59 0.036
X2

ν 0.35 0.14 0.61 0.93 0.54 0.5 0.027
CB2 0.38 0.24 0.61 0.82 0.51 0.44 0.031
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is the case with with error functions X2
k . Preference must be given to functions X2

k (or
more general maximum likelihood approaches) that use for regression and selection the
same function.

Comparing our results with the work of Carpenter et al. (1994), we can notice that
model selection is more reliable for the continuous models studied here than for the discrete
models studied by these authors. However, Carpenter et al. fitted the prey equation only
(using predator data as input into this prey equation). Therefore, they only selected for
agreement with the prey dynamics, while we selected for agreement with both prey and
predator dynamics. These authors also state that manipulation of the biological system is
necessary to identify models. Our analyses show that it is needed to have initial conditions
far from the equilibrium state, in order to generate strong dynamics of the system on its
way back to the equilibrium. This can be accomplished in natural lakes by stocking or in
laboratory cultures (batch or chemostat) by using low initial populations.

There is an interesting difference between the two models: the ratio-dependent time-
series were always identified more reliably, in the sense that the difference between the
sum of squares X2 after fitting both models was on average larger with ratio-dependent
data than with prey-dependent data (‘pushing’ the cumulative distribution functions to
the left in Figure 7.3). It seems that the ratio-dependent model is more flexible, adjusting
itself more easily and with smaller residuals to given data. Carpenter et al. (1994) had
found the same difference (their Figures 3 B and E). This raises the problem that prey-
dependent time-series are more often (wrongly) identified as being ratio-dependent than
the other way round.

A most interesting observation is that the error functions X2
ω and X2

ν made simultane-
ous wrong selections in only 2 of the 400 time-series. We can therefore conclude that the
most reliable model identification can be obtained by fitting both error functions and by
accepting a selected model only if both functions give the same result. Unfortunately, ob-
servation error fit can become unreasonable in long time series because of the accumulated
process error that increasingly diverts the system from the deterministic description.

Regarding the performance of the error functions with respect to individual parameter
identification, all error functions give parameter estimates close to the actual values (Fig-
ure 7.4). However, Table 7.4.2 (calculated CV ’s from the replicated time-series) shows
that only parameters r and K are estimated with high precision, all others having large
CV ’s. Assessing the quality of parameter estimates with the method of the dominant
eigenvalue (Figure 7.5) shows that, at the low noise level, this estimation is quite reliable
for all error functions but with the higher noise level, there is a large variation with a con-
siderable deviation from the expected median (Figure 7.5). The error functions X2

ν and
CB1 overestimate local stability (the estimated dominant eigenvalue λ is too negative).

There exist alternatives to the way we addressed the problem of model selection in
this article. In particular, one could take a versatile model that is either prey-dependent
or ratio-dependent, depending on a specific parameter value (e.g., using the models of
Hassell & Varley (1969) or DeAngelis et al. (1975)), and then directly estimate this pa-
rameter. However, estimating it by fitting the whole model (as done in this paper) will
also result in a large uncertainty of the estimate, thus reducing the selective power of this
approach. Using Bayesian approaches to estimate posterior distribution functions of this
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parameter are another possibility (Stow et al., 1995), but they require sophisticated mul-
tidimensional integration techniques. The direct comparison performed in this paper is
more parsimonious and has the additional advantage of choosing between models that can
be incorporated into complex food webs (Arditi & Michalski, 1995; Michalski & Arditi,
1995a).

In fact, there is no general statistical solution to the problem of fitting nonlinear models
to data that have both observation and process error. As stated by Pascual & Kareiva
(1996), the practical solution is often to fit as if there were only one type of error in the
data. If neither of the error types should be neglected we suggest to use both types of
fitting and base model selection on the joint result. This conclusion will probably remain
valid for systems that do not fit into the framework of this study (e.g., systems that have
only one state variable, unstable dynamics or more available data points), but in these
cases identifiablility should again be verified by a simulation analysis similar to the one
presented in this paper.

Our general conclusion is that, to address the question of identification of dynamic
models, the scientist should first try to reduce observation and/or process error as much
as possible. If both errors remain important, then model selection is most reliable if
both observation error fit and process error fit select the same model. Parameter esti-
mates obtained by these methods are characterized by large coefficients of variation. The
data should also exhibit dynamics of much higher amplitude than the errors in the data.
This can be obtained either by low initial conditions in laboratory experiments or by
perturbation of natural systems.
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Appendix

7.A Calculating the derivatives of the state variables

with respect to the parameters

For the Levenberg-Marquart method as well as for calculating the error function CB1 and
CB2 arises the problem of differentiating the solution of an ordinary differential equation
with respect to a parameter. We have applied the following method (see, e.g., Pavé 1994).
Let y(t) be the solution of the differential equation

dy(t)

dt
= f(y(t), a), y(t0) = y0

where f depends on a parameter a. We are looking for ξ(t) := dy(t)
da

. Applying the chain
rule and changing the order of derivation, we obtain

d

da

dy(t)

dt
=

d

dt
ξ(t)

=
df(y, a)

dy

dy

da
+

df(y, a)

da

=
df(y, a)

dy
ξ(t) +

df(y, a)

da

and, therefore, by solving the following coupled differential equations,

dy(t)

dt
= f(y(t), a)

dξ(t)

dt
=

df(y, a)

dy
ξ(t) +

df(y, a)

da

y(t0) = y0

ξ(t0) = 0

we find the required derivative ξ(t) by numerical integration. If a is the initial condition

y0 then
df(y,a)

da
= 0 and ξ(t0) = 1. This concept can easily be extrapolated to vector valued

y(t) (dimension m). In this case, dy/dt, dy/da, f , df/da, ξ and dξ/da are vectors of
dimension m and df/dy is an m×m matrix, the total derivative.
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Abstract

Fitting time-series to nonlinear models is a technique of increasing importance in popu-
lation ecology. In this paper we apply it to detect predator dependence in the predation
process by comparing two equally complex predator-prey models (one with and one with-
out predator dependence) to predator-prey time-series. Stochasticities in such data come
either from observation error or from process error or from both. We discuss how these
errors have to be taken into account in the fitting process and we develop eight different
model-selection criteria. Applying these to laboratory data of protozoan and arthropod
predator-prey systems shows that they have little predator dependence, with one interest-
ing exception. Field data are more ambiguous (either selection depends on the particular
criteria or no significant differences can be detected) and we show that both models fit
reasonably well. We conclude that simple systems in homogeneous environments show
in general little predator dependence. More complex systems show significant predator
dependence more often than simple ones, but the data are also often inconclusive. Pre-
dictions for such systems based on simulation analyses should rely on several models to
reduce mathematical artefacts in these predictions.

Les techniques d’ajustement de modèles non linéaires à des séries temporelles pren-
nent une importance croissante en écologie. Dans le présent travail, nous les appliquons
à la détection d’un éventuel effet de l’abondance des prédateurs sur le processus de
prédation en comparant deux modèles proie-prédateur d’égale complexité (l’un ave et,
l’autre sans prédateur-dépendance) à des séries temporelles d’abondances de proies et de
leurs prédateurs. La variabilité des données provient d’erreurs d’observation, d’erreurs de
processus, ou des deux. Nous discutons la façon dont il faut tenir compte de ces erreurs
lors de l’ajustement de modèles, et nous développons huit critères différents de sélection de
modèle. L’ajustement des modèles à des données sur des systèmes proie-prédateur de lab-
oratoire (protozoaires et arthropodes) montre, à une exception près, que l’abondance des
prédateurs a peu d’influence. Les données de terrain sont plus ambiguës (soit la sélection
dépend du critère de sélection retenu, soit la qualité de l’ajustement n’est pas significa-
tivement différente pour les deux modèles), mais les deux modèles s’ajustent correcte-
ment. Nous concluons que des systèmes simples en environnement homogène présentent
en général peu de prédateur-dépendance. Des systèmes plus complexes présentent plus
souvent une prédateur-dépendance significative que les systèmes simples, mais les données
ne permettent souvent pas de trancher. Il convient donc de baser d’éventuelles prédictions
fondées sur des simulations sur plusieurs modèles afin de réduire les risques d’artéfacts
mathématiques dans ces prédictions.
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8.1 Introduction

The relation between predator-prey theory and real population time-series has been the
subject of many studies since the early publication of the Lotka-Volterra equations or the
Nicholson-Bailey model. The studied systems range from protozoan organisms (Gause,
1935; Luckinbill, 1973; Veilleux, 1979) over arthropod systems (Utida, 1950; Huffaker,
1958; Begon et al., 1996b) and microtine systems (Hanski & Korpimäki, 1995) to the
whole plankton community of lakes (Scheffer, 1998). Traditionally, model validation is
done by comparing the data to the model either qualitatively (stable or cyclic dynamic
behaviour, length of cycles, amplitudes, etc.) or quantitatively (estimating parameters
in the field, calibrating the model ‘by hand’ to obtain a good fit to the data). Recent
computer power combinedwith powerful global optimisation algorithms enable researchers
to fit rather complex mechanistic nonlinear models to time-series data. Such fits serve
not only for model validation, but also for the detection of chaos (Turchin & Taylor, 1992;
Dennis et al., 1997; Turchin & Hanski, 1997), the testing of hypothesis (Berryman, 1996;
Turchin & Ellner, 2000) or model selection (Morrison et al., 1987; Carpenter et al., 1994;
Harrison, 1995; Morris, 1997). See Shea (1998) for a review of general uses in population
ecology.

In this paper we use model fitting as a criterion for model selection. The particular
functional form of a predator-prey model can have implications in fisheries management
and conservation biology (Yodzis, 1994), on persistence of populations (Myerscough et al.,
1996) or on spatial distributions of predators (van der Meer & Ens, 1997). We address
the question of detecting predator dependence in the functional response (e.g., due to
interference amongst searching predators). The functional response links prey and preda-
tor dynamics in all models that follow the conservation of mass principle (Rosenzweig
& MacArthur, 1963; Ginzburg, 1998). In this large general framework, many different
expressions for the functional response can be found in the literature (see May (1976b)
and Michalski et al. (1997) for inventories). The most widely used forms (Lotka-Volterra,
Holling type I, II and III) are functions of the prey abundance only (prey-dependent,
termed “laissez-faire” by Caughley (1976)) and do not depend on predator abundance.
Expressions that include predator dependence become usually more complex (Hassell &
Varley, 1969; Beddington, 1975; DeAngelis et al., 1975) which renders parameterization
or theoretical analysis more tedious. In practice this often results in the use of (simpler)
prey-dependent functional responses. The discussion on the importance of predator de-
pendence has been revived by the introduction of the ratio-dependent concept (Arditi
& Ginzburg, 1989) which offers a theoretical framework for modelling predator-prey sys-
tems (but also food chains or whole food webs) with a functional response that inherently
includes predator dependence while preserving the simplicity of the traditional Holling-
type functions. While prey-dependent predator-prey models rest essentially on top-down
mechanisms (Oksanen et al., 1981), ratio-dependent models can reflect both bottom-up
and top-down relations (Arditi & Ginzburg, 1989; Poggiale et al., 1998).

The two views have mostly been tested by comparing equilibrium population abun-
dances along a gradient of enrichment or by reanalyzing data of published functional re-
sponse experiments (see next section). Fitting models to time-series data of populations
that are not in an equilibrium and applying goodness-of-fit as a criterion approaches the
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problem from a dynamic point of view. The way how models should be fit to time-series
depends on the source of errors in the data (Solow, 1995; Hilborn & Mangel, 1997). If
the underlying process is stochastic and there is no error due to imperfect sampling (ob-
servation error), then predictions are only possible for a limited time into the future, e.g.,
to the next data point (1-step-ahead fitting). On the other side, if the underlying process
is deterministic and there is only observation error, then we can fit the population tra-
jectory (as determined by the model, its parameters and the initial population size) over
the whole length of the time-series (see Figure 8.1). We will adopt Pascual & Kareiva’s
(1996) terminology for these two types of fitting, calling the first process-error-fit and
the second observation-error-fit. In the literature one may also find the terms s-step-
ahead fitting (Ellner & Turchin, 1995) for process-error-fit and trajectory fitting for
observation-error-fit.

A process-error-fit approach was used by Carpenter et al. (1994) for 7 years of freshwa-
ter plankton data in two North American lakes (Paul Lake and Tuesday Lake), one of them
having been manipulated during the experiment (addition and removal of fish). These
authors fitted alternative prey- and ratio-dependent discrete models (difference equations)
assuming the (non-manipulated) parameters to be the same over the whole 7 years. They
showed in a simulation study that model selection should be possible with the data of the
manipulated system, but the actual real data analysis yielded little interpretable results.
One problem in their study is that plankton dynamics are more correctly modelled by a
continuous system (large populations and overlapping generations) and taking the time
between measurements as the prediction time step is an arbitrary choice. Furthermore,
parameters might change from one year to the next.

Another study (Harrison, 1995) used an observation-error-fit approach and compared
several continuous predator-prey models (differential equations) by fitting them to the
protozoan data of Luckinbill (1973). Working with laboratory data, the author assumed
stochastic influences to be negligible compared to observation error. A major problem
in this study is that Luckinbill did not provide any information on measurement error
in his data and therefore criteria that take model complexity into account (e.g. Akaike’s
information criterion, see Hilborn & Mangel (1997)) were not used by Harrison. Unsur-
prisingly, the model with the largest number of parameters gave the best fit.

The two described methods of fitting, i.e., process-error-fit and observation error fit,
are statistically correct only if there is either no measurement error or no process stochas-
ticity respectively. Methods that account for both errors simultaneously exist, but they
require independent estimation of one of the errors or of their relative size (Clutton-Brock,
1967; Reilly & Patino-Leal, 1981; Schnute & Richards, 1995; Pascual & Kareiva, 1996).
Since this information is often not available or hard to obtain, the “practical decision
usually involves choosing between the two fitting procedures” and “the two assumptions
are expected to provide two extremes in a range of likely parameter estimates” (quoted
from Pascual & Kareiva (1996), who make an extensive discussion of statistical properties
of the two types of fitting).

In this paper, we use the method of fitting alternative models to time-series data in
order to address the biological problem of detecting predator dependence in the functional
response. This will be done by fitting a prey-dependent and a ratio-dependent continuous
predator-prey model with the same number of parameters (analogously to the treatment
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of Carpenter et al. (1994) with discrete time models) to a large number of real popula-
tion time-series and applying goodness-of-fit as a criterion. These time-series come from
simple protozoan batch cultures, spatially more complex laboratory arthropod systems
and complex lake plankton systems. Since such data contain both observation and pro-
cess errors, we will apply systematically both process-error-fit and observation-error-fit,
assuming that selection of the same model with both types of fits indicates a more reliable
result. This reliability is further extended by not using least squares only but also robust
techniques (to detect artifacts caused by outliers in the data) and by the use of bootstrap-
ping to test whether the differences found in the goodness-of-fit or the predictive power
are significant. Since all time-series analysed here have the characteristics of a continuous
system (large populations, overlapping generations), we fit the differential equations and
not their discretised analogues. We will work with data found in the literature (including
the data of the studies mentioned above) and original plankton data from Lake Geneva
that all give reasonable fits with both types of fitting. We will reanalyze Carpenter et al.’s
data with continuous models and by fitting each year separately. Since seasonal plankton
dynamics are often explained by deterministic models of the type used here (Scheffer,
1998), it will also be interesting to see how such models perform when confronted with
real data. Harrison’s analysis will partially be redone with models of the same complexity
only (thus permitting direct comparison) and by testing his observation-error-fit results
against process error fit results. Based on all these fits we will also discuss some of the
advantages and disadvantages of either process-error-fit or observation-error-fit.

The time-series being used are characterised by a small size [10 - 50 data triplets (time,
prey, predator)] and by rather large measurement errors with coefficients of variation (CV )
of up to 50 %. For these reasons, a good fit of some model does not necessarily mean that
the used formalism describes the biological processes correctly. This was demonstrated
convincingly for the case of logistic population growth already very early in the history
of mathematical population biology, namely by Feller (1939). Besides Verhulst’s logistic
function, he also considered two other mathematical models that are S-shaped and that
have the same number of parameters and showed that the two forms fit equally well to
the real data that were then considered to be the “proof” that the logistic model has the
character of a physical law. This example illustrates that obtaining a good fit of a model
to data is not a proof of the biological correctness of the chosen mathematical formalism.
Or, in the words of Cale et al. (1989), ‘multiple process configurations can produce the
same pattern’.

These serious problems of model fitting can be addressed by following May’s (1989)
advice by ‘generating pseudo-data for imaginary worlds whose rules are known, and then
testing conventional methods for their efficiency in revealing these known rules’. Following
this advice and Carpenter et al.’s example, we tested the distinguishability of the two
models under consideration in a simulation study (see chapter 7). This study showed
that the tested models can reliably be identified by goodness-of-fit from predator-prey
time-series (that reach an equilibrium after at least one large amplitude oscillation) with
20 data triplets and moderate errors (CV of 10%).
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8.2 The alternative models

Based on the principles of mass conservation and decomposition of the dynamics of a
population into birth and death processes we write the canonical form of a predator-prey
model as

dN

dt
= f(N)N − g(N,P )P

dP

dt
= eg(N,P )P − µP, (8.1)

where N and P are prey and predator abundances respectively, f is the prey growth
rate in the absence of a predator, µ the predator mortality rate in the absence of prey
and e the conversion efficiency. Predation is represented in these equations by the func-
tional response g (Solomon, 1949), which in general depends on both prey and predator
abundances.

In order to fit model (8.1) to data, we have to formulate f and g explicitly. For the
recruitment function f , we use a standard logistic growth,

f(N) = r(1− N

K
),

with intrinsic growth rate r and carrying capacity K. For the functional response two
models will be considered, a prey-dependent one and a ratio-dependent one:

aN

1 + ahN
←− g(N,P ) −→ αN/P

1 + αhN/P
, (8.2)

where a is the searching efficiency, h the handling time and α an overall searching ef-
ficiency for all predators. The dynamics of the resulting predator-prey systems can be,
with both functional responses, stable coexistence, unstable coexistence (limit cycles) or
extinction of the predator. The ratio-dependent model also offers extinction of both prey
and predator (Jost et al., 1999). These dynamics are also observed in the time-series with
which we shall compare the models by a goodness-of-fit criterion. For this comparison
to be possible, even in the absence of exact knowledge about data quality (type of error,
standard deviations), the models must have the same number of parameters. As men-
tioned in the Introduction, there exist various models with various degrees of predator
dependence. The two above are taken as examples at the two extremes (8.2). We chose
the Holling type II model because it is the most widely used predator-independent (=
prey-dependent) functional response. The ratio-dependent model is the simplest predator-
dependent functional response that has the same number of parameters as Holling’s model
and that offers comparable dynamics. Alternative predator-dependent models with com-
parable dynamics (Beddington, 1975; DeAngelis et al., 1975; Hassell & Varley, 1969) have
more parameters.

The ratio-dependent model was originally proposed as a simple hypothesis that ac-
counts for predator dependence (Arditi & Ginzburg, 1989). The fact that it was justified
with empirical and phenomenological arguments has aroused some controversy (Abrams,
1994; Ruxton & Gurney, 1994; Akçakaya et al., 1995; Abrams, 1997) but mechanisms
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leading to ratio dependence have now been demonstrated (Poggiale et al., 1998; Cos-
ner et al., 1999). However, it should be noted that in highly complex systems, such as
lakes, there can be too many important processes at work to incorporate them all in a
mechanistically-derived model (spatial aggregation, defence mechanisms, refuge, etc.). In
such situations, we consider that phenomenological models whose predictions correspond
to global empirical patterns are reasonable options.

The two contrasting hypotheses have mainly been tested indirectly, by comparing
equilibrium properties in relation to enrichment, based on empirical evidence for posi-
tive correlation between trophic level abundances in freshwater lakes (McCauley et al.,
1988; Arditi et al., 1991a; Mazumder & Lean, 1994; Mazumder, 1994; McCarthy et al.,
1995). There is also experimental evidence that spatial heterogeneity induces predator
dependence in the functional response (Beddington et al., 1978; Arditi & Säıah, 1992).
Analysis of direct measurements of the functional response at the behavioural level has
revealed many cases of predator dependence with some cases agreing with ratio depen-
dence (Arditi & Akçakaya, 1990). Predator dependence seems thus to be a common
occurrence in natural populations. Ratio dependence is just one particular way to include
predator dependence, but it does so in a parsimonious way and allows for direct compar-
ison with prey-dependent types of the functional response. Therefore, a better fit of the
ratio-dependent model over the prey-dependent model cannot be interpreted as a proof
that this model is correct, but only that it better approximates the actual occurrence of
predator dependence.

We have avoided so far the term “density dependence”. There is some confusion in the
literature about the use of this term in the context of predator-prey models since density
can refer to prey or predator abundance. We agree with Ruxton and coworkers who
equate density dependence with predator dependence (Ruxton & Gurney, 1992; Ruxton,
1995), because the functional response is intrinsically bound to the predator and also
because density dependence indicates in its usual sense a detrimental effect of density on
its own population’s growth rate. However, some authors refer to prey density when using
the term ‘density-dependent predation’. We consider this to be an incorrect usage of the
term, but to avoid any confusion, we will refrain from this term.

8.3 Materials and methods

8.3.1 Time-series

Two kinds of time-series data are analysed: data retrieved from the published literature
and unpublished original data of phyto- and zooplankton dynamics in Lake Geneva. Only
data with strong dynamics (sustained or damped oscillations) and allowing reasonable fits
with both process-error-fit and observation-error-fit are considered. Since the difference
between the two functional responses we compare is in the influence of predator abun-
dance, we request that the range of variation of predator abundance over time is such
that the CV is greater than 50%. See Table 8.1 for a listing of all data taken from the
literature. The data were usually obtained by scanning the graphics and extracting the
data with the software DataThief (Macintosh). This process introduces unavoidably some
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error, but this error is of minor importance compared to the final residuals in the fits.
The data for Paul and Tuesday Lake (Carpenter et al., 1993) were given directly in tabu-
lated form within the publication, and some missing data points were obtained from the
authors. One data set of Luckinbill (1973) was also obtained directly from the author.
Most of these data sets were originally given with no indication on the observation error,
or it was measured once and assumed to be similar for all data points (Carpenter et al.,
1994; Huffaker, 1958). Therefore, the calculated likelihoods (see below) cannot have an
absolute meaning, and will only serve to reject fits if the model becomes too unlikely.

Table 8.1: Sources for data are: 1) Gause (1935), 2) Gause et al. (1936), 3) Luckinbill
(1973), 4) Veilleux (1979), 5) Flynn & Davidson (1993), 6) Wilhelm (1993), 7)
Huffaker (1958), 8) Huffaker et al. (1963), 9) Carpenter &Kitchell (1994), 10) CIPEL
reports (1986-1993). Numbers or letters separated by comma refer to further data
sets with the same basic name, e.g. gause1,-3 refer to data sets gause1 and gause3.
Usually these numbers refer to the figures or tables within the cited publication,
except for plankton data where they refer to the year the data have been collected.
Name of data set source prey predator type of data
gause1,-3,-4 1 Paramecium Didinium batch culture

caudatum nasutum (#individuals)
gauset2a,-c,-d,-e,-f 2 Aleuroglyphus Cheyletus batch culture

agilis eruditus (#individuals)
luckin2a,-2b,-3, 3 Paramecium Didinium batch culture
-4a,-4b,-5 aurelia nasutum (#individuals)

veill8, -10 4 Paramecium Didinium batch culture
aurelia nasutum (#individuals)

flynn1b,-1c,-2b,-2c 5 Isochrysis Oxyrrhis batch culture
galbana marina (#cells)

wilh4.2,-4.4,-5.27, 6 Escherichia Tetrahymena batch culture
-5.28,-5.29,-5.30 coli thermophila (biovolume)

huff11,-12, . . . ,-18 7 Eotetranychus Typhlodromus laboratory
sexmaculatus occidentalis (#individuals)

huff63-3,-63-4 8 Eotetranychus Typhlodromus laboratory
sexmaculatus occidentalis (#individuals)

paul84,-85, . . . ,-90, 9 edible zooplankton whole lake data
tues84,-85, . . . ,-90 phytoplankton (biomass)
edPhy86,-87, . . . ,-93 10 edible herbivorous whole lake data

phytoplankton zooplankton (biomass)
totPhy86,-87, . . . ,-93 10 total herbivorous whole lake data

phytoplankton zooplankton (biomass)

The data on Lake Geneva were collected as part of the lake monitoring program of
the International Commission for Protection of Lake Geneva Against Pollution (CIPEL).
The sampling methods are described in annual reports, e.g. CIPEL (1995). A short
description can also be found in Gawler et al. (1988). Phytoplankton was sampled with
a Pelletier bell-shaped integrating sampler from 0 to 10 m water depth. Zooplankton was
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sampled by vertical tows from a depth of 50 m with coupled nets. Plankton biomass was
calculated from abundance and estimated biovolume. Phytoplankton with length< 50 µm
and biovolume < 104µm3 was considered edible phytoplankton. Herbivorous zooplankton
was identified by species and age class: cladocerans (mainly Daphnia and Bosmina),
calanoides (Eudiaptomus) and cyclopoids for the age classes nauplii to copepodites stage
3 (higher age classes were considered carnivorous). The samples were taken at the station
SHL2, at the centre of the lake, midway between Evian and Lausanne (lake depth 309 m).
Plankton was usually sampled twice a month. The observation error was not measured,
but the collecting scientists estimate the CV to be in the range of 10-20 % for an individual
sample as in Carpenter et al. (1994). However, there are important heterogeneities in the
lake, and the CV between several samples in the same area at the same time can be
much larger (N. Angeli, pers. comm.). For this reason, we use in the fitting a prudent
CV of 50 %, which is considered realistic for zooplankton but somewhat pessimistic for
phytoplankton.

8.3.2 Error functions

As explained in the Introduction, we consider two types of errors, measurement error
(imprecise sampling) and dynamic noise (due to environmental stochasticities, differences
between the biological process and its mathematical description and, to a lesser extent
in our data, demographic stochasticity). Figure 8.1 illustrates the resulting difference
between observation-error-fit and process-error-fit. The prediction horizon with process-
error-fit is traditionally one time step ahead (e.g., Carpenter et al. 1994, Dennis et al.
1995). For the reasons detailed in Ellner & Turchin (1995), we predict the dynamics s
time steps ahead, with s chosen in such way that the autocorrelation with the predictor
drops under 0.5. The main argument for this choice is to detect the nonlinear dynamics
in the time-series. On smaller prediction horizons, standard statistical linear regression
models might be more powerful than our mechanistic nonlinear models. See Ellner &
Turchin (1995) for a more detailed justification.

We will assume that the (observation or process) error in the densities is of a multi-
plicative type (lognormal), with a constant CV (stationarity). This type of distribution
is typical for population data in general (Dennis et al., 1997; Hilborn & Mangel, 1997).
It was used and justified for plankton in particular by Carpenter et al. (1994). For pro-
tozoan and arthropod data also, this choice seems reasonable (Wilhelm, 1993; Huffaker,
1958). In general, the true nature of the error can be intermediate between normal and
lognormal. This was assumed in the regression analysis of Harrison (1995) performed
with Luckinbill’s data, but this approach requires another parameter that Harrison de-
termined empirically. For reasons of parsimony, we refrained from such an approach,
and the lognormal error type seems on the whole better suited to the kind of data we
analysed. Cases in which model selection might be biased by using lognormal error are
discussed specifically. Uncertainties in the time measurements are considered to be small
in comparison with the errors in abundances and are neglected in this study.

To formalise these ideas, consider a simple differential equation dy/dt = f(y, θ) with
time-series data (ti, Yi)1≤i≤m, where ti is the time at which the population y is observed
to have density Yi, m is the number of data points [for predator-prey models y has to be
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Observation error fit

Process error fit
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Figure 8.1: Fitting a differential equation to a time-series. In (a) all error is assumed
to be measurement error and the whole trajectory is fitted at once (observation-error-
fit), while in (b) all error is assumed to be process error and each data point serves
as an initial condition to predict the next data point (process-error-fit).

replaced by the couple (N,P )] and θ is a vector of q parameters. Let ŷi be the unknown
real population density at time ti, and y(ti) = y(ti, θ) the deterministic solution of the
differential equation at time ti with parameters θ. If there is only observation error in the
data, then the whole trajectory is fit and there is only one initial condition, y(t0) = ŷ0,
that is treated like a free parameter. If there is only process error then the initial condition
is different for each predicted data point and defined as the data point s steps previously,
y(ti−s) = Yi−s, s ≥ 1. With these notations and with ∆ti = ti − ti−s, the process can be
written as

observation error only process error only
ŷi = y(ti, θ) ŷi = y(ti, θ) ν(∆ti, f, θ)
Yi = ŷiω Yi = ŷi
y(t0) = ŷ0 y(ti−s) = Yi−s

Process error ν and observation error ω are considered to be lognormal random variates
with constant coefficients of variation CVν and CVω respectively. However, note that the
process error ν depends in general on the time interval between measurements and on the
underlying process f with parameters θ.

The log-transformed data are assumed to be Gaussian with expectation log(ŷi) and
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standard deviation σk (=
√
log(CV 2

k + 1)), k = ν, ω (Carpenter et al., 1994). We define
the residual as

di = log(Yi)− log(y(ti)).

The fitting procedure minimises the sum of squared residuals weighted by the variances,

X2
k = min

θ

m∑
i=1+s

d2
i

σ2
k

, k = ν, ω (X2
k)

(with s = 0 for k = ω). This least squares regression with the described statistical model
is equivalent to maximum likelihood (Press et al., 1992).

While the proportionality between population size and standard deviation of measure-
ment or process error is generally accepted, there may be considerable doubt about the
normality of the log-transformed values. Regression with criterion X2

k is very sensitive to
outliers (data points that are farther away from their real value than would be expected
with a normal distribution) with respect to parameter estimation and model selection
(Linhard & Zucchini, 1986). We therefore used as a second criterion the Laplacian (or
double exponential) error function,

XL
k = min

θ

m∑
i=1+s

|di|
σk

, k = ν, ω (XL
k )

which is more robust against such outliers (Press et al., 1992).

8.3.3 Simulation study, numerical methods and bootstrapping

The power of error function X2
k for selecting the correct model from time-series data has

been tested in a simulation study (see chapter 7): we parameterized the two models (8.1
and 8.2) randomly to create deterministic dynamics that resemble the observed dynamics
in a lake (reaching a stable equilibrium after one or two large amplitude oscillations) and
simulated stochastic data (20 data points) containing both process error and observation
error (both of a multiplicative type and with CV = 0.1, comparable to the ones found
in lakes). Both models were fitted to these artificial time-series with error functions X2

k

in a 3-step-procedure: (a) computing upper and lower limits of the parameters from the
time-series data, (b) finding starting values of the parameters with a genetic algorithm
and (c) computing the optimal parameters with the standard simplex method coupled
with simulated annealing (Press et al., 1992). In this regression scheme we use only
the available time-series data to estimate the parameters and with them the discrepancy
between model and data. Only logical constraints such as positivity of parameters are
applied. This simulation study showed that either observation-error-fit or process error
fit alone detect the correct model with more than 95% confidence if we require that the
goodness-of-fit for each model (as estimated by X2

ω or X2
ν ) differ by more than 5%. More

importantly, in only 1% of all fits was the wrong model identified with both criteria
simultaneously.
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All real time-series in this study are fitted with error functions X2
k and XL

k by the
same 3-step-procedure that was used in the simulation study, with process-error-fit and
observation-error-fit. In a further analysis we estimate the expectation E(X2

k) by residual
bootstrapping as described in Efron & Tibshirani (1993). Based on the bootstrap fits we
calculate the improved estimate of prediction error IEPE (Efron & Tibshirani, 1993) to
compare the predictive power of the two models. See the Appendix for a detailed technical
description of these methods. As a by-product, the bootstrapping permits to estimate for
each time-series the variation in the estimated parameters.

8.3.4 Model comparisons

Model selection will be based on the goodness-of-fit according to criteriaX2, XL or E(X2)
and the prediction error criterion IEPE detailed above. The likelihood @ of the model
(given the data) can be calculated approximatively with X2 and the degrees of freedom
DF [number of predicted data points minus number of parameters, i.e.,DF = 2(m−s)−q]
by the formula

@ = Γ

(
X2

2
,
DF

2

)
, (8.3)

where Γ is the incomplete gamma function (Press et al., 1992). We could not derive such
a function for the likelihood in case of Laplacian error. Therefore, the same function is
used to get at least an order of magnitude of the likelihood.

Note that equation (8.3) is absolutely correct for linear models only (Press et al., 1992).
To know what likelihood levels should be expected with our nonlinear models we have to
rely on the likelihoods computed in the simulation analysis (chapter 7) that ranged from
0.01 to 0.9 (that is, likelihood @ after fitting the model that was originally used to simulate
the artificial data). Assuming a larger discrepancy between the theoretical model and the
real process we accept all fits with a likelihood above 0.001 (calculated with a ‘prudent’
CV of 0.5), otherwise model selection is considered nonsignificant. WhileX2 andXL must
differ by at least 5% between the two models to be considered significantly different (see
previous section), E(X2) and IEPE (obtained by bootstrapping) are compared directly
with a standard t-test (α = 0.05) and model selection is accepted as significant if the
likelihood of E(X2) is also above the limit 0.001. The discussion will be based solely on
the significant fits that are indicated in Table 8.4 by a † or ‡. The ‡ indicates strongly
significant fits (@ > 0.001 with CV = 0.1).

The comparison between the qualitative dynamic behaviour of the data and the (win-
ning) fitted model is used as a second criterion for the adequacy of the model. These
qualitative dynamics are classified into strongly stable equilibria (ss) when the trajectory
converges to the equilibrium after at most one oscillation, stable equilibria (st) if there is
more than one oscillation before stabilisation, limit cycles (l), extinction of the predator
only (pe) and extinction of both populations (e). See Figure 8.2 for an illustration of the
different types.
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Figure 8.2: The different dynamic behaviours that are distinguished in the data
and in the fitted models. Each graph shows the phase space with isoclines of prey
(isoN ) and predator (isoP ) and an example trajectory. pe designates extinction of
the predator only, ss strongly stable systems, st stable ones, l limit cycles, and e
extinction of both populations (only possible in the ratio-dependent model).
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8.4 Results

The detailed fitting results (model selection per type of fitting and per criterion) with
additional information on each time-series (size and apparent dynamics) are summarised
in Table 8.4 (see legend for more details). To facilitate their interpretation the essential
model selection results are condensed in Table 8.2 applying the following rules: for each
time-series a “winning” model is selected if all significant fits with both types of fitting
and with the four different criteria identify the same model, otherwise the time-series is
marked as ambiguous. For the lake data the same procedure is also applied separately
for both types of fitting. Furthermore, we indicate if the qualitative dynamics (Figure
8.2) of the significant fits correspond to the apparent dynamics of the timeseries. Since
extinction is not possible in the prey-dependent model we assume correct detection of the
qualitative behaviour if the fit shows limit cycle behaviour (the closest to extinction that
this model can produce).

Table 8.2: Summary of model selections: the first part of the table lists for each
group of time-series the number of times each model was selected by both fitting
types, with the number of correct qualitative dynamics in parentheses. The number
of ambiguous model selections are listed in the last column. The second part of the
table treats process-error-fit (PEF) and observation-error-fit (OEF) separately for
lakes.

data prey-dep. ratio-dep. ambiguous
Gause 6 (3) 1 (1) 1
Luckinbill, Veilleux 6 (1) 0 2
Flynn and Davidson 0 4 (4) 0
Wilhelm 2 (0) 2 (2) 2
Huffaker 6 (5) 0 4
Paul Lake 2 (2) 2 (0) 3
Tuesday Lake 4 (2) 0 3
Lake Geneva (edible) 2 (1) 4 (2) 2
Lake Geneva (total) 5 (2) 1 (0) 2

PEF OEF PEF OEF PEF OEF
Paul Lake 2 (2) 3 (3) 2 (0) 2 (0) 3 2
Tuesday Lake 2 (1) 6 (3) 1 (1) 0 4 1
Lake Geneva (edible) 4 (3) 2 (1) 1 (0) 6 (3) 3 0
Lake Geneva (total) 2 (2) 6 (2) 3 (1) 1 (0) 3 1

8.4.1 Protozoan data (simple batch cultures)

The protozoan data of Gause, Luckinbill, Flynn & Davidson, and Veilleux were the eas-
iest to fit and they gave the most significant results. Of Gause’s eight data sets, six are
prey-dependent, one ratio-dependent and one nonsignificant. The latter data set has less
than 10 data triplets (time, prey, predator); it may simply be too short for a reliable
model identification. In most cases the dynamic behaviour is also correctly detected by
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the winning model. We can therefore conclude that Gause’s data do not indicate any
significant predator-dependence in the functional response. This is confirmed by Luck-
inbill’s and Veilleux’s data (both with similar organisms), in which six prey-dependent
time-series are identified and two are ambiguous. However, the observed limit cycle was
only detected once by process-error-fit. The regression resulted mostly in dynamics with a
stable equilibrium. One data set of Veilleux fits significantly better to the ratio-dependent
model with observation-error-fit: these data show fast convergence to a sustained stable
limit cycle with minima far above zero, a pattern that cannot be produced with the
prey-dependent model. However, the ratio-dependent fit does not resemble the data very
much either. We think that this limit cycle should rather be explained by delayed effects,
and the significant ratio-dependent fit is also due to the lognormal error structure that
gives more importance to points closer to zero. When repeating the regression assuming
a Gaussian error the fit becomes indeed significantly prey-dependent.

An interesting exception to this prey-dependent predominance in protozoan systems
are the data of Flynn & Davidson (1993) which are all strongly significantly ratio-
dependent for all criteria and both types of fitting. These data are those of static batch
cultures without aeration, stirred every day before sampling. It is therefore likely that het-
erogeneities developed between stirrings. The data sets ‘flynn1b’, ‘flynn2b’ and ‘flynn2c’
are shortened from their Figures 1b, 2b and 2c respectively because there was an obvious
change of parameters during the experiment, detectable by an abrupt change in dynamics
and described by the authors as the onset of strong cannibalism amongst predators. The
data sets consist of the data before the change.

The data of Wilhelm (1993) are the least conclusive: two data sets are prey-dependent,
another two are ratio-dependent and two are ambiguous. The pre-equilibrium dynamics
in the time-series (always one large amplitude cycle followed by a long time of stable
coexistence) are probably too short for a reliable model identification.

The variation in the estimated parameters is rather high (medians of the CV ’s ranging
from 0.16 to 0.78) but they are smaller than with the other time-series (see below).
Observation-error-fit gives slightly smaller CV ’s than process-error-fit.

8.4.2 Arthropod data (spatially complex laboratory systems)

Huffaker’s data fit rather badly to both models (low likelihoods), but the few significant re-
sults are always prey-dependent observation error fit. Process-error-fit confirms this result
with the exception of two significant ratio-dependent fits with Laplacian error (equation
XL

k ). However, these two fits are qualitatively wrong (stable dynamics instead of limit cy-
cles or extinction). The data themselves are always unstable with oscillations and coming
close to extinction, although the populations seem very often to recover shortly before ter-
mination of the experiment. These dynamics are correctly reproduced with both models
and observation-error-fit. Interestingly the prey-dependent model retains these unstable
dynamics with s-step-ahead fitting, while the ratio-dependent model mostly converges to
a stable system. This is a further indication that the prey-dependent model is closer to
the real dynamics. The medians of the CV ’s of the estimated parameters range from 0.09
to 1.91 (again with smaller ones in observation-error-fit).
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8.4.3 Plankton data (complex lake plankton systems)

In general these data are very noisy and it is not clear if there are well defined dynamic
patterns or only noise. However, the algorithms seemed to find dynamic patterns in some
cases.

With observation-error-fit, Paul Lake gives five times a significant fit, of which three are
prey-dependent. Process-error-fit gives four significant fits, also with two prey-dependent
ones. In three cases, the two types of fitting are contradictory. Carpenter et al. (1994)
had not found any significant result for this lake with discrete predator-prey models and
process-error-fit (one-step-ahead fitting), which agrees with our finding. The results are
rather different in manipulated Tuesday Lake. Observation-error-fit selects the prey-
dependent model in six of the seven time-series, with one ambiguity. Process-error-fit
is less conclusive, with two prey-dependent time-series, one ratio-dependent, three non-
significant and one ambiguity. Interestingly, Carpenter et al. found for this lake a good
fit to the ratio-dependent model. We do not know if this discrepancy comes from the fact
that we look at seasonal dynamics or because we use continuous models.

For Lake Geneva, we the phytoplankton either with edible algae only or with total
algal biomass. Observation-error-fit gives the clearest trends: ratio-dependent (6 vs.
2) for edible phytoplankton, prey-dependent (6 vs. 1) for total phytoplankton. With
process-error-fit the trends are less distinct but seem to contradict the previous results:
prey-dependent (4 vs. 1) with edible phytoplankton, ratio-dependent (3 vs. 2) with total
phytoplankton. Ambiguities between results from the two types of fitting appear in four
cases.

Regarding qualitative behaviour, observation-error-fit often results in transient dy-
namics without reaching an equilibrium state or the dynamics are in some cases true
limit cycles, while process-error-fit nearly always results in stable systems. Especially the
ratio-dependent model shows often strongly stable dynamics (a pattern termed “limited
predation” by Arditi & Ginzburg (1989), see Figure 8.2). The medians of the CV ’s of
the estimated parameters cover a wide range from 0.4 to 2.4 (again with smaller ones in
observation-error-fit).

8.5 Discussion

We have compared predator-prey time-series (that contain both process and observation
error) to two alternative predator-prey models with the objective to detect predator de-
pendence in the functional response. The goodness-of-fit was estimated by fitting the
models to the time-series assuming that there is either observation error only or process
error only, an assumption made necessary by the insufficient quantitative information
about the actual errors in the data. Looking at the proportion of ambiguous model se-
lection due to a small difference between the two goodness-of-fit values (marked with a
• in Table 8.4), we see that observation-error-fit was only half as much ambiguous as
process-error-fit (in all analysed systems). It seems therefore that observation-error-fit
is a more efficient tool than process-error-fit to select models (this difference was also
noted by Harrison 1995). However, since the data contain both types of error, the most
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reliable selection is possible if both types of fitting are used and if their selection results
are not contradictory. Actually, model selection is less limited by the type of fitting than
by the dynamic variation in relation to errors in the time-series. When there are strong
dynamics over the whole length of the time-series (Gause’s, Luckinbill’s, Veilleux’s, Flynn
and Davidson’s and Huffaker’s data) then both types detect the same winning model and
few ambiguous results due to small differences in goodness-of-fit are obtained. Only if
there is little dynamic variation (one large initial oscillation as in Wilhelm’s data) or if the
dynamics are hidden behind strong observation errors as in lakes such ambiguous results
become more frequent.

A number of technical problems with both types of fitting are worth discussing. The
strongest limitation for observation-error-fit is that it works only for relatively short time-
series because process error accumulates with time even in well controlled laboratory
systems (Harrison, 1995). Process-error-fit is questionable with respect to the choice of
s (time steps ahead prediction, see discussion in Ellner & Turchin 1995). Furthermore,
when predicting s steps ahead, one implicitly also predicts s−1, s−2, . . . , 1 steps ahead,
and there is currently no statistical solution as to how this information should be prop-
erly incorporated into the fitting process. For future research in this direction, we need
more quantitative information about observation or process error in the time-series data.
This would permit to select between models of different complexity (by using information
criteria such as Akaike’s information criterion, see Hilborn & Mangel 1997) and the use
of regression techniques that account for both observation and process error (Reilly &
Patino-Leal, 1981; Schnute & Richards, 1995; Ellner & Turchin, 1995). However, these
methods are computationally very expensive especially for fitting continuous systems.
Bootstrapping one single data set can take a full week of computing time on a couple of
workstations (Peter Turchin, personal communication). For such reasons simpler regres-
sions as done in this paper will remain a useful tool in ecology, especially since extensive
simulations with artificial data (May, 1989) are often the only possibility to test whether
the available data can answer the question at hand.

The main subject of this study, detecting predator dependence in the functional re-
sponse, yields interesting and unexpected results. The most significant results are ob-
tained with the protozoan data. Most systems are either closer to prey dependence or
the samples are too small to detect reliably predator dependence. However, there is one
predator-prey system with four time-series (Flynn & Davidson, 1993) that shows signif-
icant predator dependence. The predators in this system can show strong cannibalism
at low prey-densities (pers. comm. with the authors). Although such cannibalism was
not observed in the analysed data, this suggests that the predators are capable of strong
interference when they encounter one another. Since these batch cultures were stirred
only once every 12 h, it is possible that heterogeneities developed between stirrings. Both
factors have been shown to lead to predator dependence. To our knowledge this is the
first example of a protozoan system with monospecific prey and predator that exhibits
so strong predator dependence that the ratio-dependent model fits better. This example
demonstrates that the biology of the system must dictate the model being built, and that
traits like potential cannibalism can indicate that a model with predator dependence is
more appropriate.

Luckinbill and Veilleux obtained in their experiments several population cycles before
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extinction by reducing the predator attack rate (thickening of the medium with methyl
cellulose) and by reducing prey carrying capacity and growth rate [using poorer nutri-
tion (half strength cerophyl mixture) for the prey in time-series ‘luckin5’]. Qualitatively,
these parameter changes can stabilise both the prey-dependent and the ratio-dependent
model. Only by a direct quantitative comparison of the data with the two models can
we exclude predator dependence to be an important trait in these systems. The stable
limit cycles obtained by Veilleux (1979) (with a refinement of Luckinbill’s technique) differ
qualitatively from both models, indicating that either a model with intermediate predator
dependence or other mechanisms such as delayed effects are important. Harrison (1995)
obtained drastically improved fits to Luckinbill’s data upon incorporating these two traits
(predator mutual interference and a delayed numerical response in the form of nutrient
storage).

It appears that simple homogeneous and monospecific predator-prey systems are of-
ten better described by a prey-dependent model. Kaunzinger & Morin (1998) studied a
three-level protozoan food chain (bacteria - Colpidium striatum - Didinium nasutum) and
demonstrated that enrichment changes equilibria and system stability in a way that agrees
better with prey-dependent theory (Rosenzweig, 1971; Oksanen et al., 1981). Bohannan
& Lenski (1997) compared dynamics and equilibria of a bacteria-bacteriophage system (in
a chemostat setup, with two different nutrient inflow concentrations) qualitatively with a
complex prey-dependent model (dividing bacteria into susceptible and resistant strains)
and with a simple aggregated ratio-dependent model (only one state variable to describe
bacteria). They found that the qualitative results (destabilization with increasing nutri-
ent inflow, both bacteria and bacteriophage equilibria increase with the higher nutrient
inflow) were better predicted by the prey-dependent model. However, the comparison is
statistically unsatisfactory, since the number of parameters were not taken into account
(11 in the prey-dependent model and 7 in the ratio-dependent model).

There also seems to be no predator dependence in Huffaker’s arthropod data. In
most cases the prey-dependent model fits better, and in the two cases with process-
error-fit where the ratio-dependent model fits better this fit is qualitatively wrong (stable
equilibrium instead of a limit cycle, see Table 8.4). Two other aspects are important
for the fits to these data: (1) quantitatively the models fit rather badly to the data,
the experimental systems showing larger variation than can be reproduced by our simple
models and (2) observation-error-fit gives with both models qualitatively correct fits (see
Figure 8.3). The first point might be explained by Huffaker’s experimental setup, food for
prey being dispersed in a 2- or 3-dimensional structure and the prey colonising this food
in a fairly heterogeneous manner. Such a laboratory system is structurally more complex
than the protozoan batch cultures of the previous paragraph. The second point indicates
that the used models can nevertheless be used for qualitative analysis; only quantitative
conclusions should be interpreted with care.

The fits to phyto- and zooplankton data are the most difficult to interpret. The easiest
conclusion would be that either the data are too noisy for this kind of model identification
or that both models are too simple for lake dynamics. The first interpretation is supported
by the qualitative nature of the process-error-fits (mostly stable or strongly stable systems)
that might mean that the best prediction is not obtained by dynamic nonlinear modelling
but rather by simply using some mean abundance of prey and predator. Despite these
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Figure 8.3: Two examples illustrating (a) observation-error-fit with a prey-de-
pendent model to Huffaker’s data and (b) process-error-fit (s = 4) with a ratio-
dependent model to Flynn and Davidson’s data.

reservations, many significant model identifications were obtained with observation-error-
fit, showing that long term dynamic patterns are present. These significant fits are of
both types (prey-dependent and ratio-dependent) with tendencies for some lakes: Tuesday
lake being mostly prey-dependent, the system with edible phytoplankton in Lake Geneva
rather ratio-dependent and the system with inedible algae more prey-dependent. However,
these tendencies are not sufficiently clear to give recommendations as to which model
might be more appropriate. Brett & Goldman (1997) argued that phytoplankton displays
strong bottom-up influence while zooplankton is more sensitive to top-down control. The
phytoplankton-zooplankton interaction itself (that is studied in this paper) is subject to
both forces, which might also explain the ambiguity in model identification.

We can conclude that these heterogeneous systems with multispecies prey and predator
levels show both types of functional responses or intermediate types. Or, in the words
of Yodzis (1994) who studied relations between predator dependence in the functional
response and fisheries management, “it remains frustratingly difficult to say just which
functional form is the appropriate one for a given population”. As a consequence, we
should base population management decisions on the predictions of several competing
models, building up confidence in each model by constant comparison of its predictions
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with actual observations. Decision making then results from the predictions of all these
models and on the current confidence level in them (similarly to weather forecast). For
lake management in particular, other models could use sigmoid functional responses since
alternative prey exist [the ‘inedible’ algae can be consumed to some extent (Davidowicz
et al., 1988; Gliwicz, 1990; Bernardi & Giussani, 1990)]. Simple linear forms of the
functional response are another reasonable choice in the context of process-error-fit and
short term prediction (Carpenter et al., 1994). A very good example of this multi-model
approach is given by Sherratt et al. (1997), who analyse four completely different models
(reaction-diffusion equations, coupled map lattices, deterministic cellular automata and
integrodifference equations) to study invasion patterns in space. Since a common feature
emerges from all models, it can be regarded as a highly likely real feature. Working with
at least two models can help identify model artifacts and direct further research.

With respect to detection of predator dependence, one might also suggest to con-
sider an intermediate model that can be predator-dependent or predator-independent
depending on the value of a specific parameter (as done in Arditi & Akçakaya (1990) for
functional response data) and then directly estimate this parameter. However, looking
at the uncertainty of the estimated parameters in this study makes it unlikely to obtain
more information about predator dependence by this intermediate approach. Bayesian
approaches to estimate posterior distribution functions of this parameter were also pro-
posed (Stow et al., 1995), but they require sophisticated multidimensional integration
techniques and little is known about the robustness of these methods when confronted
with ecological data of the type used here.

One basic support for the Holling type II function comes from an analogy with the
Michaelis-Menten enzyme kinetics and Monod’s work on bacterial growth (Monod, 1942).
Monod’s function of microbial growth is structurally equivalent to the Holling type II
function and it has been used with enormous success during the last 60 years. However,
other functions have been discussed in microbiology and, most interestingly for this study,
Contois published already in 1959 a growth function for microorganisms that is equivalent
to the particular ratio-dependent model used in this study. Many authors have used
Contois’ function without comparison to Monod’s function and they obtained good fits
to their data (mostly sewage and fermentation processes) (Bala & Satter, 1990; Tijero
et al., 1989; Lequerica et al., 1984; Pareilleux & Chaubet, 1980; Ghaly & Echiegu, 1993).
Table 8.3 lists studies that compared several functions to data according to a single
selection criterion. While Contois’ function often fitted better than Monod’s function,
model selection was also often ambiguous (as in the present work). Many of these results
deal with systems in which the prey or the predator are sets of many species. While
monospecific systems seem to be better approximated by Monod’s model (Grady Jr.
et al., 1972), just as we saw in our analysis with Gause’s, Huffaker’s and Luckinbill’s data,
multispecies systems as cited above and in Table 8.3 seem to favour predator-dependent
models (Grady Jr. & Williams, 1975; Elmaleh & Ben Aim, 1976; Daigger & Grady Jr.,
1977).

To summarise, systems with monospecific prey and predator show, in general, little
predator dependence in the functional response except in cases where predators have a
strong potential to interfere with each other (e.g., cannibalism). More complex systems
such as plankton in freshwater lakes show a multitude of patterns. We found no indicators
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Table 8.3: Collection of studies that compared Contois’ function quantitatively with
other functions. The models tested are noted in the third column with the best
fitting model, if there was one, in capitals. References are: (1) Chiu et al. (1972),
(2) Ashby (1976), (3) Morrison et al. (1987), (4) Dercová et al. (1989), (5) Wilhelm
(1993).
ref. system tested functions
(1) microbial sewage Moser, Monod, Contois
(2) protozoa feeding on bacteria Contois, Ashby (Monod’s

function divided by predator
density)

(3) nutrient limited phytoplankton growth Monod, Contois, logistic
(4) growth and glucose consumption of yeast Contois, Monod
(5) protozoa feeding on bacteria Contois, Monod and 9 others �

�best fits were obtained with functions that are sigmoid with respect to substrate
concentration, either Contois or Monod type

in these systems that tell whether predator dependence in the functional response should
be included or not. We conclude that whenever predictions must be done by model
simulation, at least two different models should be used to distinguish robust features
from model-dependent features. Parameters of such models should be estimated as well
as possible by direct measurements in the field, with nonlinear regression being used only
for fine-tuning. The fitting itself should account for stochasticities in the observed data,
but the techniques used in this study (observation-error-fit and process-error-fit) leave
much room for further improvement.
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Table 8.4: Results for fitting time-series data. The data sets are described by
their length m and their apparent dynamic behaviour (in parenthesis if difficult to
decide): st for stable non trivial equilibrium, ss for strongly stable equilibrium, l for
limit cycle, e for extinction of both populations, pe for extinction of the predator
only and t for transient trajectory. For each type of fitting (process-error-fit or
observation-error-fit) the better fitting model is indicated (p for prey-dependent and
r for ratio-dependent) with criteriaX2, XL (both with the dynamic behaviour of the
selected model with the fitted parameters), expectation EX2 and improved estimate
of prediction error (IE). s is the prediction horizon in process-error-fit. Significance
of model selection is indicated by a † or by a ‡; • indicates non-significance due to a
low difference between the fits to each model; the absence of a superscript indicates
non significance due to a low likelihood (see the text for the employed definition of
significance).
data characteristics process-error-fit observation-error-fit
name m dyn. s X2

ν XL
ν EX2 IE X2

ω XL
ω EX2 IE

gause1 18 st 2 r st p† st r• p• p† st p† st p† p†

gause3 18 l 2 p† st p† l p† p† p† l p† l p† p†

gause4 19 l 2 p† st p† st p† p† p† l p† l p† p†

gauset2a 10 e 1 p l p• l p p p l p† l p† p†

gauset2c 10 e 1 p l p† st r r p† l p† l p† p†

gauset2d 10 e 1 p l p† l p p p l p† l p† p
gauset2e 9 e 1 p l p l p r p l p l r• p
gauset2f 9 e 1 r e r† st, e r• r• r† e r• e r• r†

luckin1a 35 l 3 p st p† st p p p l p† l p† p†

luckin1b 24 l 3 p st p† st p† p† p† l p† l p† p†

luckin3a 16 l 3 r† st p† st p† p† p† l p† l p† p†

luckin4a 27 l 3 p st p† st p† p† p l p† l p† p†

luckin4b 21 l 3 p l p† l p† p† p† l p† l p† p†

luckin5 62 l 3 p st p† st p p p† l p† l p† p†

veill8 87 l 3 p† st p† st p† p† r† l r• l r† r†

veill10 20 l 3 p l p† st p† p† p† l p† l p† p†

flynn1b 14 t 4 r‡ t r† t r‡ r‡ r† t r† t r† r†

flynn1c 21 st, e 4 r† e r† e r† r† r† e r† e r‡ r‡

flynn2b 28 st, e 4 r† e r† e r† r† r† e r† e r† r†

flynn2c 28 st, e 4 r† e r† e r† r† r† e r† e r† r†

wilh4.2 16 st, e 4 r st r† e r p p st p† ss p† p†

wilh4.4 17 st, e 3 r† ss r• ss r• r† r† st r• st r• r•

wilh5.27 17 e 4 p st r• ss r p p st r† e p p
wilh5.28 22 st, e 5 r• e r• e r• r• p† pe p† t p† p†

wilh5.29 19 st 3 p† ss r† ss p† p† r• st p† ss p• p•

wilh5.30 18 st, e 4 p• pe r• ss r• p• p† t p† t p† p†
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huff11 12 e, l 3 r st r st r p r st r st r r
huff12 13 e 3 p l r e p p p l p† l p p
huff13 10 e 2 p l p† l p p p† l p† l p† p†

huff14 10 e 2 p l p† l p† p† p† l p† l p† p†

huff15 11 e, l 3 r st p l r p r st p† l r r
huff16 11 e, l 3 p l p l p p p† l p† l p† p†

huff17 12 e 3 r st, e r† st r p p l p† l p p
huff18 35 l 4 r st r st r r p l p l p p
huff63-3 58 l 4 p st p• st p p p st p† st p p
huff63-4 23 l 3 p l r† st r p p† l p† l p† p†

paul84 13 (st) 2 r• ss r• ss r• r• p• st r† t r† p•

paul85 17 st 2 p st p† ss p p p ss p† st p p
paul86 14 (st) 2 p• st p• st p† p† p• st r† t p• r†

paul87 15 (st) 2 p st p• st r p p† st p† st p† p†

paul88 15 (l) 2 r• ss r• ss r• r• r† t p† st r• r†

paul89 13 l 2 p ss r† st p p = st p† l = =
paul90 16 (l) 2 p st r† ss p r r st r• st r r
tues84 11 st 2 p ss r• ss p• r• p† st r• t p† p†

tues85 13 st 2 r e r• e p p p l p† t p† p†

tues86 14 (l) 2 r† st r• st p† p† p† l r• t p† p†

tues87 15 (l) 2 p st p• pe p p p† l r• t p† p•

tues88 13 (l) 2 p† st p† st p† p† p† st p† st p† p†

tues89 11 st 2 p• st p• st r• p† p† st r† st p• p•

tues90 19 (st) 2 p ss r• ss r• r† p† l p† t p† p†

edPhy86 14 (l) 2 r ss p• ss r p p st r† ss p p
edPhy87 13 (st) 2 p st p† st p† p† p† st p• st p† p•

edPhy88 13 (st) 2 p st p• l p† p† p† st p† t p† p†

edPhy89 13 (l) 2 p ss r• st p† r• r• st r† t r• r•

edPhy90 14 (st) 2 r• ss r• ss r• r• r† st r† st r† r†

edPhy91 12 (st) 2 r ss p• ss r• r• r† st r† st r† r†

edPhy92 11 st 2 p ss p† ss p r r st r† st r† p•

edPhy93 12 st 3 r st, e r† e r† r† r† t r† t r† r†

totPhy86 14 (st) 3 p t r† ss p r r t r† t r r
totPhy87 13 (st) 2 p ss p† ss p• p† p st p• t p† r•

totPhy88 15 (l) 2 p ss r• ss p r p st p† st p p
totPhy89 14 (l) 2 p st r• ss p• r• p† st p† st p† p†

totPhy90 14 st 2 p† st r• ss p† p† p† st p† st p† p†

totPhy91 16 (l) 2 p ss p• ss p• r• p† st r• st p• p†

totPhy92 16 (l) 2 r† ss r• ss r† r† p• t p• l r† p†

totPhy93 16 (l) 2 r† ss r† ss r† r p† l p• l p† p•
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Appendix

8.A Residual bootstrapping and IEPE

We use the same notation as introduced in the section ‘Error functions’. The algorithm
described below is of the type residual bootstrapping (Efron & Tibshirani, 1993). This ap-
proach assumes that the used model is correct and the parameters obtained by minimising
equation X2

k are used to construct the bootstrap time-series.

Fitting the whole trajectory (with initial condition as a free parameter or nuisance
parameter) is related to simple non-linear curve fitting and the following algorithm is
taken from Efron & Tibshirani (1993). For process-error-fit the same algorithm can be
used with slight modifications that are indicated. Let θ̂ be the best fitting solution to the
original data, obtained by minimising equation X2

k , with the residuals

ε̂i = log(Yi)− log
(
y(ti), θ̂

)
, 1 + s ≤ i ≤ m

and total error ê (s = 0 for observation-error-fit). These residuals represent the empirical
distribution function of the residuals. Now the bootstrap estimates are created by the
following algorithm:

1. (for process-error-fit only) Fix initial values y�i = Yi, 1 ≤ i ≤ s.

2. Calculate the bootstrap data (y�i )1+s≤i≤m by

log(y�i ) = log(y(ti), θ̂)) + ε�i 1 ≤ i ≤ m

where the ε�i are a random sample with replacement from the (ε̂k)1+s≤k≤m (for
predator-prey data, all residuals are thrown in the same pool). For process-error-fit
s ≥ 1 and the bootstrap data are calculated recursively.

3. Estimate θ̂� from the bootstrap data by minimising equation X2
k , with final error

e�.

4. Go to second item and repeat the loop B times (B = 50).

Efron & Tibshirani (1993) suggest that B = 50− 200 is in general sufficient for a reliable
bootstrap estimate. Since regression of a differential equation to data is already quite
costly we used the lower value (B = 50), thus allowing to bootstrap on average 1-4 time-
series per day. Mean and standard deviation of the error are now calculated in the usual
way from the B estimates e�.

The method of the improved estimate of prediction error (IEPE) is described in Efron
& Tibshirani (1993) (chapter 17). Let eθ̂� be the error with the original data obtained
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using the fitted bootstrap parameters θ̂�. The difference eθ̂�− e� is in general positive and
called the ‘optimism’. The improved estimate of prediction error is now calculated by

IEPE =
1

m− s

[
ê+

1

B

B∑
i=1

(eθ̂�,i − e�i )

]

(s = 0 in case of observation-error-fit) and its standard deviation is taken to be the
standard deviation of the optimism’s scaled by the number of predicted data points. This
estimation of prediction error is independent of the estimated residual variance and the
number of parameters fitted, so it is less model dependent than alternatives such as Cp

and BIC statistics (Efron & Tibshirani, 1993).
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Appendix A

Collection of predator-prey models

Following the two principles ‘conservation of mass’ and ‘decomposition of any growth
process into birth and death processes’ leads to the general equations for a predator-prey
model:

dx

dt
= F (x)− g(x, y)y

dy

dt
= h ((g(x, y))y − µ(y)y

where F (x) is the prey growth function, g(x, y) the functional respnse, h(. . . ) the numer-
ical response (predators produced in terms of numbers or biomass as a function of the
consumption) and µ(y) is a predator mortality rate. The terms functional and numerical
response were introduced by Solomon (1949).

Predator-prey models that do not follow the ‘conservation of mass’ principle are not
considered in this collection. Popular predator-prey models of this type go back to an
initial idea of Leslie & Gower (1960) who studied the model

dx

dt
= r(1− x

K
)x− axy

dy

dt
= cy(1− d

y

x
).

The obvious modification of replacing the Lotka-Volterra predation term ax by a bounded
Holling type II functional response ax/(1 + ahx) has been proposed, analysed and pub-
lished by both Tanner (1975) and May (1975).

Whenever power laws are used (e.g., xm), dimensional problems can occur. They could
in principle be remedied by inserting a ‘dummy’ parameter u that is of the same dimension

as the used state variable (e.g., replace xm by
(

x
ux

)m
ux), but this more complicated

notation is never used in practice (see also section 1.2).

A.1 The prey growth function

Often F (x) is decomposed into F (x) = xf(x) where f is called intrinsic growth rate or
per capita growth rate. Following these scheme three types of growth may be identified:

141
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• constant f(x) (exponential or Malthusian growth) or linear decrease of f(x) with
increasing x (logistic growth),

• maximal intrinsic growth rate at intermediate density (Allee effect),

• nonlinear hyperbolic decrease of the intrinsic growth rate (Gompertz Law, a popular
model in clinical oncology).

Possible mathematical forms of these growth functions (and others) are listed in table
A.1.

A.2 The functional response

The functional response (prey eaten per predator per unit of time) has found different
functional expressions in the literature. Tables A.2 and A.3 list a little collection of the
different types with their origin.
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Table A.1: Simple growth functions found in the literature
source F (x) remarks

Malthus (1798) rx exponential or Malthusian
growth, considered like a ‘growth-
law’

Verhulst (1838) r(1− x
K
)x logistic growth equation

Goel et al. (1971),
Gilpin et al. (1976),
Richards (1959)

r(1− ( x
K
)θ)x theta logistic growth

Rosenzweig (1971) r((K
x
)g − 1)x 1 ≥ g > 0

Smith (1963) r K−x
K+εx

x

von Bertalanffy
(1951)

pxm − qx often m = 2/3 is used by an al-
lometric relationship with the or-
ganisms weight

Szathmáry (1991),
Eigen & Schuster
(1979)

kx2 hyperbolic growth for sexual
reproduction, the population
reaches infinity in finite time
(solution x(t) = ( 1

x(0)
− kt)−1)

Szathmáry (1991),
Zielinski & Orgel
(1987)

α + k
√
x subexponential growth (found in

enzyme-free replication)

Allee (1931),
Edelstein-Keshet
(1988)

(r − a(x− b)2)x the condition b <
√

r/a must be
fulfilled

Volterra (1938) (kx− d− δx2)x incorporating the Allee effect in
sexually reproducing organisms

Allee (1931),
Bazykin (1985)

r(1− x
K
)x(x

ε
− 1) K

K−ε
inverse density dependence at low
densities

Philip (1957), Sza-
thmáry (1991)

(k(x)− d(x))x− kxe−βx 1 − e−βx is the probability of a
female being fertilized and cor-
responds to Volterra’s kx − δx2,
(k(x)− d(x)) corresponds to Ver-
hulst’s r(1− x/K).

Gompertz (1825) −αx ln(x) equivalent to λe−xtx
Gompertz (1825) r ln(K

x
)x

Gutierrez (1992) (a(1− e−
b
x )− c)x

Schoener (1978) ( IE

Y +x
−m)x mechanistic derivation, m is out-

wash, equivalent to Smith (1963)
and to Getz (1984)
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Table A.2: Functional responses that depend on the prey density (x) only
source g(x) remarks

Lotka-Volterra
(Nicholson (1933)
in discrete form)

ax linear functional response without sat-
uration

Maynard Smith
(1975) (Thompson
(1924) in discrete
form)

b constant response, destabilising

Gause (1934) c
√
x less efficient predator than Lotka-

Volterra
Rosenzweig (1971) cxl (0 < l ≤ 1) approx. type II, but without saturation
Holling (1959a) ax

1+ahx
type II (disc equation), equivalent to
the Monod type function

Ivlev (1961) b(1− e−
a
b
x) type II

Watt (1959) b(1− e−cx2
) type III, may be generalised by replac-

ing 2 by n
Real (1977) bxn

c+xn type III for n > 1. Studied with n = 2
by Takahashi (1964)

Jost et al. (1973) bcx2

b+dx+cx2 multiple saturation model, type III,
also proposed by Hassell et al. (1977)

Arditi (1980) ba(x+cx2)
b+a(x+cx2)

type III, slope at the origin not 0

Andrews (1968) bx
c+x+dx2 Monod-Haldane equation, growth inhi-

bition at high densities
Tostowaryk (1972) adx

d+a(x+cx3)
type II at low densities, decline at high
densities

Sokol & Howell
(1981)

ax
1+bx2 Daphnia feeding on (‘inedible’) fil-

amenteous algae, simplified Monod-
Haldane equation



C. Jost Appendix: General predator-prey models 145

Table A.3: Functional response models that depend on prey (x) and predator (y)
density
source g(x, y) remarks

Hassell & Varley
(1969)

pxy−m modification of Lotka-Volterra or
Nicholson

Gomatam (1974) px log y
y

no saturation, inspired by Gompertz
(1825)

Strebel & Goel
(1973)

cxly−m modification of Rosenzweig (1971), no
saturation

Hassell & Rogers
(1972)

pbxy−m

b+px
combination of Hassell & Varley (1969)
with disc equation, affects saturation
level

Rogers & Hassell
(1974)

g1(x)
ys

y
g1(x) is any function from Table A.2.
Affects saturation level. ys is the solu-
tion of my2

s + (1−m)ys − y = 0.
Crowley & Martin
(1989)

ax
1+ahx

1
1+βy

derived from the behavioral ‘pre-
emption’ model

Harrison (1995) g1(x)
1

1+βy
g1(x) is any function from Table A.2.

Beddington (1975) px
1+ahx+m(y−1)

generalisation of the disc equation

DeAngelis et al.
(1975)

px
1+cx+my

equivalent to the preceding for y >> 1.

Arditi & Akçakaya
(1990), (Suther-
land, 1983)

αx y−m

1+αhx y−m combines completely Hassell & Varley
(1969) with Hollings disc equation

Arditi & Michal-
ski (1995), Contois
(1959)

αx
y+αhx

type II like ratio-dependent, equivalent
to preceding model for m = 1.

Watt (1959) b
(
1− e−

p
b
xy−m

)
modification of Ivlev (1961)

Watt (1959) b
(
1− e−cx2y−m

)
type III

Arditi et al. (1978) px
y

if xp < ya

a if xp > ya

type I ratio-dependent form with satu-
ration

Aiba et al. (1968) α x
Ks+x

e−ky

Fukaya et al. (1996) αxm

y+αhxm used in fermentation processes
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A.3 The numerical response

The numerical response is usually considered to be proportional to the functional response,
h (g(x, y)) = eg(x, y), with ecological efficiency e and any g(x, y) from Tables A.2 or A.3.
Other forms are possible but rarely used in the literature (e.g., Arditi et al. (1978), a
ratio-dependent model with a ‘hunger phase’ at low ratios x/y).

A.4 Predator mortality

Formulations of the predator mortality are summarized in table A.4. See Edwards &
Brindley (1996) for a discussion and references to these forms.

Table A.4: Predator mortality functions
source µ(y) remarks

µ constant mortality rate, used since the
Lotka-Volterra predator prey model

Steele & Henderson
(1981)

µy results in a slanted predator isocline
(no paradox of enrichment), justified
with increased predation by higher
predators

Steele & Henderson
(1992)

µy
b+y

more realistic response to increased
higher predation

DeAngelis et al.
(1975), Bazykins
model

s+ µy



Appendix B

Data from Lake Geneva

These are the detailed time-series from Lake Geneva that were used in chapter 8. The
data have been provided by J. P. Pelletier and G. Balvay from the hydrological station
at Thonon, INRA. The temperature and phosphorous data were not directly used in the
fitting but are added here for completeness.

Observed state variables and their units are the following:

State variable abbreviation unit
Nano phytoplankton NanP mg/m3 fresh weight
Total phytoplankton TotP mg/m3 fresh weight
Herbivorous zooplankton HerbZ mg/m3 fresh weight
Temperature at 5m water depth T5 ◦C
Dissolved Phosphorous PO4

at 5m water depth PO4 µg/l

147
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Plankton dynamics year 1986

Date NanP TotP HerbZ T5 PO4
21-Jan-86 131.6 380.6 334 5.9 50
18-Feb-86 89.7 415.4 146 5.2 61
3-Mar-86 28.7 180.7 176 5 64
17-Mar-86 361.8 444.5 316 5.3 59
8-Apr-86 438.1 494.1 370 5.6 58
21-Apr-86 521.1 556.6 458 5.8 59
5-May-86 1053.0 1063.8 1122 7.9 46
20-May-86 661.4 675.5 2568 9.6 3
2-Jun-86 101.0 139.1 4906 13.8 13
16-Jun-86 50.1 62.8 798 12.8 32
7-Jul-86 805.9 825.1 6518 16.9 10
21-Jul-86 980 16 8
4-Aug-86 1522.3 3046.4 1746 20 2
18-Aug-86 762.8 1887.9 1184 20.1 3
8-Sep-86 1712.0 2225.0 1076 17.9 4
23-Sep-86 2015.6 2129.6 2740 17.3 2
6-Oct-86 621.6 685.7 2044 14.5 4
6-Nov-86 239.0 346.7 614 11.4 15
17-Nov-86 317.3 497.4 190 10.7 10
8-Dec-86 225.1 329.3 476 9 22
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Figure B.1: Plankton dynamics year 1986
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Plankton dynamics year 1987

Date NanP TotP HerbZ T5 PO4
26-Jan-87 184.7 257.6 170 5.4 50
9-Feb-87 157.1 217.5 96 5.1 56
2-Mar-87 101.5 132.1 388 5.4 52
17-Mar-87 123.0 299.9 244 5.2 54
6-Apr-87 581.6 934.6 196 5.4 52
21-Apr-87 2264.6 3289.8 324 8.2 35
11-May-87 2359.6 3281.5 264 8.8 34
18-May-87 3547.1 4185.1 538 9.8 12
2-Jun-87 948.8 991.7 340 11.1 4
22-Jun-87 129.1 236.2 2548 14 20
6-Jul-87 861.1 2288.8 406 13.1 6
22-Jul-87 337.5 2014.0 1276 16.7 9
3-Aug-87 620.2 7568.7 666 19.1 8
18-Aug-87 503.0 2125.5 498 16.3 3
7-Sep-87 851.4 1626.4 2242 19.9 3
22-Sep-87 846.1 1191.5 2172 20.5 5
5-Oct-87 542.7 846.2 182 15 2
20-Oct-87 633.2 849.3 992 13.2 2
2-Nov-87 588.0 692.3 288 12.9 1
16-Nov-87 248.8 310.2 336 11.2 8
7-Dec-87 191.1 256.6 208 9 18
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Figure B.2: Plankton dynamics year 1987
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Plankton dynamics year 1988

Date NanP TotP HerbZ T5 PO4
11-Jan-88 142.4 300.2 92 7.2 34
15-Feb-88 322.5 495.2 214 6.2 42
14-Mar-88 171.9 291.0 152 5.6 44
29-Mar-88 50.4 149.9 110 6.1 46
11-Apr-88 676.6 3087.9 120 7.3 20
25-Apr-88 1350.5 2993.4 310 9.6 18
9-May-88 1636.7 1757.6 476 12.8 5
24-May-88 109.1 160.6 1106 13.1 3
8-Jun-88 56.3 83.2 1528 14.3 4
20-Jun-88 327.7 814.1 774 17.6 2
5-Jul-88 241.0 562.0 1146 18.5 3
19-Jul-88 311.6 3529.5 534 20.4 3
3-Aug-88 849.5 1909.4 170 21.6 3
16-Aug-88 395.1 2187.7 262 16.2 1
5-Sep-88 224.1 3716.2 274 18.8 2
20-Sep-88 185.4 2997.8 584 16.2 4
4-Oct-88 227.1 2608.5 74 15 2
17-Oct-88 229.5 1696.7 210 14.6 4
9-Nov-88 128.2 433.4 154 11.3 11
28-Nov-88 208.4 619.2 244 8.8 22
12-Dec-88 198.7 332.8 284 7.8 26
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Figure B.3: Plankton dynamics year 1988
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Plankton dynamics year 1989

Date NanP TotP HerbZ T5 PO4
16-Jan-89 34.1 150.7 76 6.7 32
13-Feb-89 26.4 94.9 104 6.1 42
6-Mar-89 46.6 297.3 266 6.4 36
20-Mar-89 99.1 630.5 290 6.8 34
10-Apr-89 458.0 843.9 160 7.7 24
24-Apr-89 2376.8 3533.8 610 9 3
9-May-89 1270.0 1443.1 434 10.5 3
22-May-89 1206.3 1225.2 1066 11.7 6
5-Jun-89 134.8 180.1 3032 16.6 0
19-Jun-89 749.8 869.0 1370 16.4 0
5-Jul-89 522.0 1042.5 1934 17 2
24-Jul-89 353.5 1624.5 540 17.7 1
7-Aug-89 271.0 2329.1 322 21.1 2
21-Aug-89 389.4 1486.1 592 22.5 2
11-Sep-89 363.0 902.6 380 18 3
19-Sep-89 1460.9 1820.7 1688 18.5 5
2-Oct-89 421.8 698.6 2086 15.5 3
16-Oct-89 436.8 690.4 818 13.2 3
6-Nov-89 139.5 169.2 982 12.8 3
20-Nov-89 281.4 388.8 132 10.5 7
11-Dec-89 58.9 138.5 30 6.9 35
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Figure B.4: Plankton dynamics year 1989
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Plankton dynamics year 1990

Date NanP TotP HerbZ T5 PO4
15-Jan-90 216.5 282.2 68 7 25
20-Feb-90 212.9 388.9 162 6.9 29
5-Mar-90 177.5 416.2 80 6.6 33
2-Apr-90 689.8 1060.6 104 7.2 27
12-Apr-90 1179.1 1483.5 258 7.3 21
25-Apr-90 3541.4 3702.2 498 8.8 16
9-May-90 1847.2 1894.2 958 14.6 6
21-May-90 243.7 271.6 1994 16 3
6-Jun-90 399.6 771.1 1690 16.6 5
18-Jun-90 655.3 1135.0 612 17.3 3
9-Jul-90 474.2 1381.3 562 19.4 2
25-Jul-90 481.1 1689.0 518 16 0
6-Aug-90 478.3 1455.6 396 22.2 3
20-Aug-90 226.9 1050.9 414 21.9 2
3-Sep-90 389.1 1589.7 432 19.8 4
18-Sep-90 296.3 1437.5 616 18.7 3
1-Oct-90 110.8 329.8 474 17.1 3
15-Oct-90 119.7 220.2 1044 15.4 3
13-Nov-90 179.2 229.0 288 11.4 6
26-Nov-90 122.9 196.3 314 10.3 7
17-Dec-90 174.2 281.2 174 7.5 21
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Figure B.5: Plankton dynamics year 1990
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Plankton dynamics year 1991

Date NanP TotP HerbZ T5 PO4
23-Jan-91 130.5 224.0 150 6.5 28
18-Feb-91 78.4 142.7 110 5.9 34
4-Mar-91 1097.2 1220.9 128 6 29
18-Mar-91 312.0 431.4 272 7.3 8
8-Apr-91 1874.0 1929.0 7.2 8
22-Apr-91 1246.4 1270.8 780 7.1 16
14-May-91 2631.5 2643.8 994 8.9 13
27-May-91 694.6 705.5 618 10.9 6
10-Jun-91 293.0 336.2 2280 15.7 16
24-Jun-91 537.8 630.7 1044 15.9 5
8-Jul-91 540.0 935.6 376 20 2
22-Jul-91 636.7 2377.0 136 20.3 3
5-Aug-91 788.2 1222.7 132 21.3 4
26-Aug-91 225.7 1101.2 256 22.9 6
9-Sep-91 160.1 508.1 292 19.5 5
25-Sep-91 204.6 723.6 510 18.7 4
8-Oct-91 368.8 662.1 228 15.7 3
29-Oct-91 342.5 1389.0 370 11.3 3
18-Nov-91 144.7 398.7 410 10.2 7
16-Dec-91 282.5 397.1 62 7 22
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Figure B.6: Plankton dynamics year 1991
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Plankton dynamics year 1992

Date NanP TotP HerbZ T5 PO4
15-Jan-92 151 209 158 6.39 25
24-Feb-92 124 177 272 5.6 24
2-Mar-92 253 494 218 6.17 23
17-Mar-92 282 354 438 6.17 23
7-Apr-92 705 754 270 6.45 18
21-Apr-92 601 683 512 7.5 27
4-May-92 1890 1929 856 9.83 4
20-May-92 2117 2181 620 9.32 1
1-Jun-92 193 292 1822 15.45 5
15-Jun-92 932 978 1030 15.5 4
6-Jul-92 562 1190 1058 17.5 3
20-Jul-92 216 634 410 19.1 2
3-Aug-92 348 2425 322 16.52 3
17-Aug-92 1028 3334 334 21.58 3
7-Sep-92 72 1265 450 18.37 3
22-Sep-92 328 2887 442 19.12 3
14-Oct-92 204 1445 586 14.73 2
27-Oct-92 60 1946 236 11.7 1
9-Nov-92 81 1091 228 10.97 3
23-Nov-92 132 988 244 9.79 10
14-Dec-92 68 214 328 8.42 13
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Figure B.7: Plankton dynamics year 1992
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Plankton dynamics year 1993

Date NanP TotP HerbZ T5 PO4
14-Jan-93 232.9 445.2 364
2-Mar-93 194.9 708.4 170
15-Mar-93 387.9 591.7 232
5-Apr-93 571.4 777.2 210
19-Apr-93 2985.6 3315.8 164
3-May-93 2780.0 2983.0 1366
17-May-93 2063.0 2155.6 2000
7-Jun-93 858.5 935.1 1278
21-Jun-93 341.7 590.0 572
5-Jul-93 493.5 909.8 350
26-Jul-93 208.1 3685.1 374
2-Aug-93 85.2 3289.3 368
23-Aug-93 63.7 1404.0 442
6-Sep-93 122.4 2485.0 242
21-Sep-93 110.9 1243.0 592
4-Oct-93 149.8 2173.5 528
3-Nov-93 405.9 1513.6 128
8-Nov-93 848.6 1679.0 114
24-Nov-93 159.1 382.0 482
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Figure B.8: Plankton dynamics year 1993
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Appendix C

Distinguishability and identifiability
of the studied models

C.1 Distinguishability

Let us first define what we mean by distinguishability (sensu Walter & Pronzato (1997)):
if there are two models, M(Φ) and M̂ (Φ̂), with their vector of parameters Φ and Φ̂ respec-
tively, we say M(.) is structurally distinguishable from M̂(.) if for almost any realization
Φ of parameters for M(.) there is no realization Φ̂ for M̂(.) such that M(Φ) = M̂(Φ̂).

Consider we have a set of non-zero parameters for the prey-dependent model. Equating
the prey equations of both models we get

r(1− N

K
)N − aNP

1 + ahN
= ρ(1− N

κ
)N − αNP

P + αβN
∀N �= 0, P �= 0.

Multiplying both sides by (1+ahN)(P +αβN) we get a polynomial equation in N and P .
The coefficients of a polynom are unique, therefore the coefficients belonging to any N iP j

must be the same on the left and on the right side. Since the term aP 2 has no counterpart
on the right side this is only possible for a = 0 in violation of the assumption of non-zero
parameters. We may therefore conclude that the two models are distinguishable.

C.2 Identifiability

Of the various methods described in (Walter, 1987) we will apply here the Taylor series
expansion for the case of exact observations without error. The latter hypotheses enables
us in principle to calculate successive derivatives of the population abundances, thus
expressions like Ṅ(0) or N̈(0) may be considered as known constant values.

In the Taylor series expansion approach the outputs (abundances in time, trajectories)
are developed in a Taylor series about t = 0+ of which the successive terms can be
calculated and can be expressed as functions of the unknowns. Thus we can obtain a
sufficient number of equations that can be solved for the unknown parameters.
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C.2.1 Predator-prey model with prey-dependent functional re-
sponse

Consider the model

Ṅ = r(1− N

K
)N − aN

1 + ahN
P, N(0) = N0

Ṗ = e
aN

1 + ahN
P − µP, P (0) = P0.

This model has 6 parameters that need to be estimated, so we will need at least 6
equations.

Ṅ

N
= r(1− N

K
)− aP

1 + ahN
=: η (C.1)

Ṗ

P
= e

aP

1 + ahN
− µ =: β (C.2)

∂tη =
N̈N − Ṅ2

N2

(Ṅ=ηN,Ṗ=βP )
= −ηrN

K
+

a2hηNP

(1 + ahN)2
− aβP

1 + ahN
=: γ (C.3)

∂tβ =
P̈P − Ṗ 2

P 2

(Ṅ=ηN,Ṗ=βP )
=

eaηN

(1 + ahN)2
=: δ (C.4)

∂ttη = −(η
2 + γ)rN

K
− 2a3h2η2N2P

(1 + ahN)3
+

a2hNP (2ηβ + (η2 + γ))

(1 + ahN)2
− aP (β2 + δ)

1 + ahN
(C.5)

∂ttβ = ae

(
(η2 + γ)N

(1 + ahN)2
− 2ahη2N2

(1 + ahN)3

)
(C.6)

The last two equations were simplified using the relations N̈ = N(γ + η2) and P̈ =
P (δ+β2) (see equations (C.3) and (C.4)). We can further simplify equations (C.3,C.5,C.6)
by using relation (C.4): 1

(1+ahN)2
= δ

eaηN
. Since µ only appears in equation (C.2) we can

solve the remaining five equations for the remaining parameters and calculate µ at the
end.

Ṅ

N
= r(1− N

K
)− aP

1 + ahN
=: η (C.7)

∂tη = −ηrN

K
+

ahP

e
δ − aβP

1 + ahN
=: γ (C.8)

∂tβ =
eaηN

(1 + ahN)2
=: δ (C.9)

∂ttη = −(η
2 + γ)rN

K
− 2a2h2ηNP

(1 + ahN)e
δ

+
ahP (2ηβ + (η2 + γ))

ηe
δ − aP (β2 + δ)

1 + ahN
=: ε (C.10)

∂ttβ =
(η2 + γ)

η
δ − 2ahηN

1 + ahN
δ =: φ (C.11)

Evaluating all five new equations at t = 0 we obtain five equations with five unknown
parameters and can now test if there exists a unique positive solution for them. This
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involves algebraic manipulations which can be done in any software such as Mathematica
or Maple, so here only the main steps will be described, not the intermediate results.

The parameters r and K only appear in equations (C.7,C.8) and (C.10). Solve the
first two equations for r and K and insert the (unique) solution into equation (C.10).
Now solve equation (C.9) for h (there will be only one solution that is positive) and insert
it into (C.11) and into the updated version of (C.10), which build now a system of two
equations in the unknowns e and h. Solve now the updated version of (C.11) for e, plug
it into (C.10), which will thus become a polynomial of first degree in a. Therefore, there
exists a unique solution that can be positive in all parameters. Finally, plug the solutions
for a and h back into (C.2) to obtain µ.

C.2.2 Predator-prey model with ratio-dependent functional re-

sponse

Consider the model

Ṅ = r(1− N

K
)N − αN

P + αhN
P, N(0) = N0

Ṗ = e
αN

P + αhN
P − µP, P (0) = P0.

We will proceed in the same manner as in the last section. The six basic equations
become:

Ṅ

N
= r(1− N

K
)− αP

P + αhN
=: η (C.12)

Ṗ

P
= e

αP

P + αhN
− µ =: β (C.13)

∂tη =
N̈N − Ṅ2

N2

(Ṅ=ηN,Ṗ=βP )
= −ηrN

K
+

α2NPh(η − β)

(P + αhN)2
=: γ (C.14)

∂tβ =
P̈P − Ṗ 2

P 2

(Ṅ=ηN,Ṗ=βP )
=

eαNP

(P + αhN)2
=: δ (C.15)

∂ttη = −(η
2 + γ)rN

K
− 2αP (αηhN + βP )2

(P + αhN)3
− αP (β2 + δ)

P + αhN

+
2αβP (αηhN + βP ) + αP (αh(η2 + γ)N + (β2 + δ)P )

(P + αhN)2
(C.16)

∂ttβ =
αeNP (γ − δ)

(P + αhN)2
− αeNP (η − β)2(P − αhN)

(P + αhN)3
. (C.17)

The last two equations were simplified using the relations N̈ = N(γ + η2) and P̈ =
P (δ + β2) (see equations (C.14) and (C.15)). We can further simplify equations (C.14,
C.16, C.17) by using relation (C.15): 1/(P + αhN)2 = δ/(eαNP (η − β)). Since µ only
appears in equation (C.13) we can solve the remaining five equations for the remaining
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parameters and calculate µ at the end.

Ṅ

N
= r(1− N

K
)− αP

P + αhN
=: η (C.18)

∂tη = −ηrN

K
+

αh

e
δ =: γ (C.19)

∂tβ =
eαNP (η − β)

(P + αhN)2
=: δ (C.20)

∂ttη = −(η
2 + γ)rN

K
− 2(αηhN + βP )2

(P + αhN)eN(η − β)
δ − αP (β2 + δ)

P + αhN

+
2β(αηhN + βP ) + αh(η2 + γ)N + (β2 + δ)P

eN(η − β)
δ =: ε (C.21)

∂ttβ =
(γ − δ)

(η − β)
δ +

(η − β)(P − αhN)

P + αhN
δ =: φ (C.22)

Evaluating all five new equations at t = 0 we obtain five equations with five unknown
parameters and can now test if there exists a unique positive solution for them.

Solve equations (C.18) and (C.19) for parameters r and K and insert the solutions into
equation (C.21). Solve now equation (C.20) for h (there is at most one positive solution)
and insert it into equation (C.22) and into the updated version of equation (C.21). Now
solve this new version of equation (C.22) for e and insert it into (the new) equation (C.21).
This has now finally become a polynomial of first degree in α and thus there exists at
most one positive solution of the equations (C.12) to (C.17).



Appendix D

Transient behavior of general 3-level
trophic chains

In a general food chain of length n the rate of change of each state variable depends both
on lower and higher state variables:

ẋ1 = f1(x1, x2)
...

ẋi = fi(xi−1, xi, xi+1) 2 ≤ i < n
...

ẋn = fn(xn−1, xn).

Bernard & Gouzé (1995) presents a method for determining the possible succession
of maxima and minima of the state variables in a food chain where the rate of change of
each state variable only depends on itself and the next higher state variable. With slight
modifications (personal communication with the authors of Bernard & Gouzé (1995)),
this method may be applied to food chains, defined as above, and thus one can determine
the possible succession of maxima and minima. This method is applied to study general
prey-dependent and ratio-dependent 3-level food chains with regard to their ability to
describe the succession of events in the PEG-model (Sommer et al., 1986).

D.1 The method

The method is based on studying the sign-transitions (i.e. changes of the sign of the
derivative) of state variables in the velocity space instead of the phase space. Let

zi(t) := ẋi(t) = fi(xi−1, xi, xi+1),

(in a physical analogy, if x(t) is abundance at time t, z(t) is the velocity of the abundance
at time t), then we can calculate the acceleration

żi(t) = tizi−1 + dizi + sizi+1
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with ti = ∂xi−1fi, di = ∂xifi and si = ∂xi+1fi. If the state variable xi is at an extremum,
then zi = 0 and with knowledge of the signs of the velocities before the extremum (i.e. if
zi−1 and zi+1 were positive or negative) and knowledge of the signs of ti and si we may
determine if xi changed from a negative slope to a positive slope (xi at minimum) or
vice versa. Therefore we can create all possible successions of extrema of our system and
compare them with real data in order to reject the model if it cannot predict the observed
pattern.

We won’t dwell here on the mathematical details, but simply mention a necessary
condition in addition to the ones given in Bernard & Gouzé (1995):

• The set of trajectories such that two state variables admit at the same time an
extremum is of zero measure.

For the trophic chains that we will consider here this and the other conditions Bernard
& Gouzé (1995) are always fulfilled.

D.2 The 3-level trophic chains and the PEG-model

Consider the model

ẋ1 = f1(x1, x2) = r(1− x1

K
)x1 − g1(x1, x2)x2

ẋ2 = f2(x1, x2, x3) = e1g1(x1, x2)x2 − g2(x2, x3)x3

ẋ3 = f3(x2, x3) = e2g2(x2, x3)x3 − µx3

where g1 and g2 are either prey-dependent (left) or ratio-dependent (right) functional
responses,

g(x1)←− g1(x1, x2) −→ g(
x1

x2

)

g(x2)←− g2(x2, x3) −→ g(
x2

x3
).

In general, g1 and g2 are positive, monotonically increasing, concave functions of their
respective arguments, gi(y) > 0, ġi(y) > 0 and g̈i(y) < 0 for y = xi or y = xi

xi+1
(for a

justification of this assumption see Arditi & Ginzburg (1989)) and gi(0) = 0.

In the context of the PEG-model x1 is the phytoplankton, x2 the herbivorous zoo-
plankton and x3 carnivorous zooplankton or planktivorous fish. Succession of maxima
and minima are given for the phytoplankton and herbivorous zooplankton: both pop-
ulations start with increasing abundances (z1(0) > 0, z2(0) > 0), phytoplankton shows
the first maximum, followed by a zooplankton maximum, the phytoplankton shows the
spring depression (clear water phase), followed by a minimum in the zooplankton. Then
phytoplankton reaches the next maximum again before the zooplankton. If the signs of
the zi are written in a vertical box, this succession may be written as
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D.2.1 Analysis of the prey-dependent model

We have the following signs in the jacobian:

t1 = ∂x3f1 = 0

t2 = ∂x1f2 = e1x2∂x1g1(x1) > 0

t3 = ∂x2f3 = e2x3∂x1g1(x1) > 0

s1 = ∂x2f1 = −g1(x1) < 0

s2 = ∂x3f2 = −g2(x2) < 0

s3 = ∂x1f3 = 0

Therefore, the possible transitions of the zi, depending on the signs of zi−1 and zi+1, are
shown in figure D.1. If z1 ∗ z3 > 0 then z2 can evolve in both ways (marked as p for
‘possible’ in the transition graph in figure D.2).
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Figure D.1: The possible transitions between extrema for the prey-dependent and
the ratio-dependent model.

We may now study all possible transitions of the whole system (see figure D.2). We
can conclude that our model can predict the succession of events in the PEG-model.
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Figure D.2: The possible transitions for the prey- and ratio-dependent model. The
straight arrows refer to transitions consistent with the PEG-model, while the dashed
arrows refer to other transitions. A p indicates alternative possibilities.

D.2.2 Analysis of the ratio-dependent model

We have the following signs in the jacobian:

t1 = ∂x3f1 = 0

t2 = ∂x1f2 = e1ġ1(
x1

x2

) > 0

t3 = ∂x2f3 = e2ġ2(
x2

x3
) > 0

s1 = ∂x2f1 = −(−ġ1(
x1

x2
)
x1

x2
+ g1(

x1

x2
)) < 0 (D.1)

s2 = ∂x3f2 = −(−ġ2(
x2

x3
)
x2

x3
+ g2(

x2

x3
)) < 0 (D.2)

s3 = ∂x1f3 = 0.

Inequalities (D.1) and (D.2) hold because of the Mean Value Theorem (see below). Since
all the signs are the same as in the prey-dependent model the transitions will be the same
as in figure D.1 and in figure D.2 and so the ratio-dependent model may also predict the
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events of the PEG-model.

Proof of inequalities (D.1) and (D.2) Let f be a strongly concave function (f̈ < 0
on the interval I := [0,∞) with f(0) = 0. The Mean Value Theorem states that for any
x, y ∈ I, x < y there exists a ξ ∈ (x, y) such that f(y) − f(x) = (y − x)ḟ(ξ). Since f is
concave, ḟ(ξ) > ḟ (y) and so we get the inequality

f(y) > f(x) + (y − x)ḟ(y)
x=0
= yḟ(y).

With f = gi and y = xi

xi+1
this proves inequalities (D.1) and (D.2). q.e.d.
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Carpenter, S. R., R. C. Lathrop, & A. Muñoz-del-Rio. 1993. Comparison of dynamic
models for edible phytoplankton. Canadian Journal of Fisheries and Aquatic Sciences
50:1757–1767.

Carpenter, S. R., K. L. Cottingham, & C. A. Stow. 1994. Fitting Predator-Prey models
to time series with observation errors. Ecology 75:1254–1264.

Caughley, G. 1976. Plant-herbivore systems. In R. M. May, ed., Theoretical ecology:
Principles and Applications , pages 94–113. Blackwell Scientific Publishers.

Characklis, W. G. 1978. Microbial reaction rate expressions. Journal of the Environmental
Engineering Division 104:531–534.

Chitty, D. 1996. Do lemmings commit suicide. Oxford University Press.

Chiu, S. Y., L. E. Erickson, L. T. Fan, & I. C. Kao. 1972. Kinetic model identification
in mixed populations using continuous culture data. Biotechnology and Bioengineering
14:207–231.

CIPEL. 1995. Rapports sur les études et recherches entreprises dans le bassin lémanique.
Tech. rep., Commission internationale pour la protection des eaux du Léman contre la
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eds., Continuous Cultivation of Microorganisms, vol. 7, pages 395–401, Prague.



C. Jost Identifying predator-prey models (PhD Thesis) 173

Fredrickson, A. G. 1977. Behavior of mixed cultures of microorganisms. Annual Review
of Microbiology 31:63–87.

Free, C. A., J. R. Beddington, & J. H. Lawton. 1977. On the inadequacy of simple
models of mutual interference for parasitism and predation. Journal of Animal Ecology
46:543–554.

Freedman, H. I., & R. M. Mathsen. 1993. Persistence in predator-prey systems with
ratio-dependent predator influence. Bulletin of Mathematical Biology 55:817–827.

Fretwell, S. D. 1977. The regulation of plant communities by the food chains exploiting
them. Perspectives in Biology and Medicine 20:169–185.

Fujimoto, J. 1963. Kinetics of microbial growth and substrate consumption. Journal of
Theoretical Biology 5:171–191.

Fukaya, T., Y. Furuta, Y. Ishiguro, H. Horitsu, & K. Takamizawa. 1996. A novel model
for continuous fermentation process for Worcestershire sauce production using a trickle
bed bioreactor. Journal of Fermentation and Bioengineering 81:233–239.

Gatto, M. 1991. Some Remarks on models of plankton densities in lakes. American
Naturalist 137:264–267.

Gatto, M. 1993. The evolutionary optimality of oscillatory and chaotic dynamics in simple
population models. Theoretical Population Biology 43:310–336.

Gause, G. F. 1934. The Struggle for Existence. Hafner Publishing Company, Inc., New
York.

Gause, G. F. 1935. Experimental demonstrations of Volterra’s periodic oscillations in the
numbers of animals. British Journal of Experimental Biology 12:44–48.

Gause, G. F., N. P. Smaragdova, & A. A. Witt. 1936. Further studies of interactions
between predators and prey. Journal of Animal Ecology 5:1–18.

Gawler, M., G. Balvay, P. Blanc, J.-C. Druart, & J. P. Pelletier. 1988. Plankton ecology
of Lake Geneva: A test of the PEG-model. Archiv für Hydrobiologie 114:161–174.

Getz, W. M. 1984. Population dynamics: a per capita resource approach. Journal of
Theoretical Biology 180:623–643.

Ghaly, A. E., & E. A. Echiegu. 1993. Kinetics of a continuous-flow no-mix anaerobic
reactor. Energy sources 15:433–449.

Gilpin, M. E., & F. J. Ayala. 1973. Global models of growth and competition. Proceedings
of the National Academy of Sciences of the USA 70:3590–3593.

Gilpin, M. E., T. J. Case, & F. J. Ayala. 1976. Theta-selection. Mathematical Biosciences
32:131–139.



174 Identifying predator-prey models (PhD Thesis) C. Jost

Ginzburg, L. R. 1998. Assuming reproduction to be a function of consumption raises
doubts about some popular predator-prey models. Journal of Animal Ecology 67:325–
327.
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Morrison, K. A., N. Thérien, & B. Marcos. 1987. Comparison of six models for nutri-
ent limitations on phytoplankton growth. Canadian Journal of Fisheries and Aquatic
Sciences 44:1278–1288.

Moser, H. 1958. The dynamics of bacterial populations maintained in the chemostat.
Carnegie Institution of Washington Publications.

Murdoch, W. W., & A. Oaten. 1975. Predation and population stability. Advances in
Ecological Research 9:2–132.

Murdoch, W. W., J. Chesson, & P. L. Chesson. 1985. Biological control in theory and
practice. American Naturalist 125:344–366.

Murdoch, W. W., R. M. Nisbet, E. McCauley, A. M. DeRoos, & W. S. C. Gurney. 1998.
Plankton abundance and dynamics across nutrient levels: tests of hypothesis. Ecology
79:1339–1356.

Myerscough, M. R., M. J. Darwen, & W. L. Hogarth. 1996. Stability, persistence and
structural stability in a classical predator-prey model. Ecological Modelling 89:31–42.

Nicholson, A. J. 1933. The balance of animal populations. Journal of Animal Ecology
2:131–178.

Nisbet, R. M., & W. S. C. Gurney. 1982. Modelling Fluctuating Populations. John Wiley
& Sons.

Oksanen, L. 1983. Trophic exploitation and arctic phytomass patterns. American Natu-
ralist 122:45–52.

Oksanen, L., S. D. Fretwell, J. Arruda, & P. Niemelä. 1981. Exploitation ecosystems in
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Tijero, J., E. Guardiola, M. Cortija, & L. Moreno. 1989. Kinetic study of anaerobic
digestion of glucose and sucrose. Journal of Environmental Science and Health A24:297–
319.

Tostowaryk, W. 1972. The effect of prey defence on the functional response of Podisus
modestus (Hemiptera: Pentatomidae) to densities of the sawflies Neodiprion swainei
and N. pratti banksianae (Hymenoptera: Neodiprionidae). The Canadian Entomologist
104:61–69.

Trexler, J. C. 1988. How can the functional response best be determined? Oecologia
76:206–214.

Turchin, P., & S. P. Ellner. 2000. Living on the edge of chaos: population dynamics of
Fennoscandian voles. Ecology 81:in press.

Turchin, P., & I. Hanski. 1997. An empirically based model for latitudinal gradient vole
population dynamics. American Naturalist 149:842–874.



184 Identifying predator-prey models (PhD Thesis) C. Jost

Turchin, P., & A. D. Taylor. 1992. Complex dynamics in ecological time series. Ecology
73:289–305.

Utida, S. 1950. On the equilibrium state of the interacting population of an insect and
its parasite. Ecology 31:165–175.

van Boekel, W. H. M., F. C. Hansen, R. Riegman, & R. P. M. Bak. 1992. Lysis-induced
decline of a Phaeocystis spring bloom and coupling with the microbial foodweb. Marine
Ecology, Progress Series 81:269–276.

van der Meer, J., & B. J. Ens. 1997. Models of interference and their consequences for
the spatial distribution of ideal free predators. Journal of Animal Ecology 66:846–858.

Varley, G. C. 1947. The natural control of population balance in the knapweed gall-fly
(Urophora jaceana). Journal of Animal Ecology 16:139–187.

Veilleux, B. G. 1979. An analysis of the predatory interaction between Paramecium and
Didinium. Journal of Animal Ecology 48:787–803.

Verhulst, P. F. 1838. Notice sur la loi que la population suit dans son accroissement.
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Yodzis, P. 1989. Introduction to Theoretical Ecology. Harper & Row.

Yodzis, P. 1994. Predator-prey theory and management of multispecies fisheries. Ecological
Applications 4:51–58.

Yodzis, P. 1995. Food webs and perturbation experiments: theory and practice. In G. A.
Polis, & K. O. Winemiller, eds., Food Webs: Integrations of Patterns and Dynamics ,
pages 192–200. Chapman and Hall.
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Titel: En qualitative und quantitative Vergliich zwüschet Räuber-Beute Mo-
del und ökologische Ziitreihene

Zämefassig

Di vorligendi Dissertation vergliicht zwei Räuber-Beute Model mit Ziitreihene, entweder us
em Labor oder vo Feld-Studie. S’erschti Model nimmt a dass d’Konsumfunktion nume vo de
Beute Dichti abhanget. So n’es Model zeiget charakteristike vo n’ere vo-obe-duraab Kontrolle.
S’anderi Model nimmt a dass d’Konsumfunktion vom Verhältnis Beute pro Räuber abhanget.
Die Ahnahm hätt zur Folg dass das Model nöd nume vo-obe-duraab Kontrolle zeiget, sondern au
vo-une-duruuf Kontrolle. Di mathematisch Analyse vo dem Verhältnis-abhängige Model zeigt e
richi Grenz-Dünamik mit mehrere Attraktore. Eine vo dene Attraktore isch de Ursprung (das
heisst beidi populatione stärbed us). De hauptsächlich Unterschiid zwüsched dene zwei Model
isch ihri Reaktion zu n’ere Beriicherig vo de Umwelt: s’erschti Model verlürt sini Stabilität
und nume de Räuber profitiert vom Riichtum, wohingege s’zweiti Model gliich stabil bliibt und
beidi, de Räuber und d’Beute, profitiered vom Riichtum. De Vergliich vo dene beide Model mit
em verbale PEG-Model (beobachteti Dünamik vo Plankton i Süesswasser See i de gmässigte
Klima-Zone) zeiget dass beidi Model die Dünamik chönd erkläre falls sich ein oder zwei vo
de Model Parameter mit de Saison verändered. Di maximale Ähnlichkeit isch s’statistische
Werkzüg zum die beide Model quantitativ mit Ziitreihene vo verschidene Tüpe vo Räuber-Beute
Syschtem z’vergliiche. Einzeller- und Insekte-Date (beidi us em Labor) passed generell besser
zum erschte (nume Beute-abhängige) Model, wohingege d’Plankton Date mit beidn’e Model
übereinstimmed ohni ei’s vo de Model z’bevorzüche. I dem Fall isch es nützlich beidi Model
z’Bruuche, erschtens, zum usefinde welli Vorhersage empfindlich uf de Underschiid zwüsched
dene zwei Model reagiered, und zweitens, zum wiiteri Forschige inschpiriere.



Title: Comparing predator-prey models qualitatively and quantitatively with
ecological time-series data

Abstract

This thesis compares two predator-prey models with the temporal dynamics observed in labo-
ratory or field predator-prey systems. The first model assumes that the functional response is
a function of prey density only, resulting in a model with top-down characteristics. In contrast,
the second model considers this function to depend on the ratio prey per predator, resulting in
a model with both top-down and bottom-up characteristics. The mathematical analysis of this
ratio-dependent model reveals rich boundary dynamics with multiple attractors, one of them
being the origin (extinction of both populations). The major difference between the two models
is in the predictions in response to enrichment, which acts as a destabilizing factor and increass
the predator equilibrium only in the prey-dependent model, but which is neutral with respect
to stability and increases both prey and predator equilibria in the ratio-dependent model. The
comparison of both models to the verbal PEG-model (observed plankton dynamics in freshwa-
ter lakes) shows that they both can explain these dynamics if seasonality is added to one or
several model parameters. The maximum likelihood concept is used to compare the two models
quantitatively with predator-prey time series of several types. Protozoan and arthropod (labora-
tory) data are generally better described by the prey-dependent model. For the phytoplankton-
zooplankton interaction, both models are valid and none is better than the other. In this case,
using both models can help detecting predictions that are sensitive to predator dependence and
direct further research if necessary.
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Titre: Comparaison qualitative et quantitative de modèles proie-prédateur à
des données chronologiques

Résumé

La présente thèse compare deux modèles proie-prédateur avec les dynamiques temporelles de
systèmes observés en laboratoire ou sur le terrain. Le premier modèle suppose que la réponse
fonctionnelle dépend uniquement de la densité des proies, et présente donc les caractéristiques
des modèles où les abondances sont contrôlées “de haut en bas”. Au contraire, le second
modèle considère que la réponse fonctionnelle dépend du ratio entre densité de proies et den-
sité de prédateurs, et inclut donc une régulation des abondances “de bas en haut”. L’analyse
mathématique de ce modèle ratio-dépendant fait apparâıtre des dynamiques de bord riches avec
de multiples attracteurs, dont l’un est l’origine (extinction des deux populations). La différence
majeure entre les deux modèles réside dans leurs prédictions sur la réponse d’un système à
l’enrichissement: déstabilisation, et augmentation de l’abondance à l’équilibre du prédateur
uniquement dans le modèle proie-dépendant, stabilité inchangée et augmentation de l’abondance
à l’équilibre des proies et des prédateurs dans le modèle ratio-dépendant. La comparaison de ces
deux modèles avec le modèle verbal PEG (décrivant la dynamique planctonique dans les lacs)
montre que tous deux peuvent rendre compte de cette dynamique si des changements saisonniers
sont introduits dans les valeurs d’un ou plusieurs paramètres. Nous comparons quantitative-
ment les deux modèles avec différents types de séries temporelles de systèmes proie-prédateur
par la méthode du maximum de vraisemblance. Les données concernant des protozoaires ou
des arthropodes (en laboratoire) sont en général mieux décrites par le modèle proie-dépendant.
Pour l’interaction phytoplancton-zooplancton, les deux modèles conviennent aussi bien l’un que
l’autre. Le fait d’utiliser les deux modèles peut alors permettre de détecter parmi les prédictions
celles qui sont sensibles à la prédateur-dépendance et, éventuellement, d’orienter des recherches
supplémentaires.
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