Multi-tissue analysis of axis elongation in vertebrate embryo

Bertrand Benazeraf

05 61 55 67 39




Understanding the formation of embryonic shapes is one of the fundamental themes in developmental biology and an important challenge in order to better understand developmental pathologies. Posterior axis elongation is a major morphogenetic event that produces the typical head-to-tail elongated body shape of vertebrate embryos. Axis elongation involves the three germ layers of the embryo: the ectoderm, the mesoderm, and the endoderm. However, while the mechanisms of tissue elongation have mostly been studied in separate tissue types, the principles allowing for the coordination of elongation between tissues and between germ layers remain largely unknown.


Ongoing work- Emerging Team:

Using transgenic quail embryos that ubiquitously express a nuclear fluorescent protein and time-lapse imaging we recently analyzed and compared different tissue movements in the elongating embryo. This approach allowed us to demonstrate that embryonic elongation is defined by the coordination of distinct tissue-specific behaviors and extensive sliding between tissues. Further quantification of tissue tectonics showed tissue-specific patterns of rotations, contractions and expansions. By using a combination classical embryological techniques, live imaging, image analysis and mathematical modeling, we are currently exploring different aspects of axis elongation at the lmulti-tissue scale. The following projects are currently developed in the lab:

  1.  Understand the coordination between cell specification and morphogenesis in the progenitor region. The goal of this project is to contribute to our basic knowledge on the links between morphogenesis and specification of the different tissues of the posterior embryonic body.


  1.  Decipher the roles of different cell behaviors in multi-tissue elongation using mathematical modeling. The goal of this project is to characterize the relative roles of different cellular behaviors (cell proliferation, cell adhesion, cell migration) in tissue and embryonic elongation.


  1. Analyze signaling dynamics and tissue maturation through multi-tissue kinetics. The goal of this project is to characterize and integrate tissue movements as new and important parameters in the establishment of signaling gradients



IMT : Ariane Trescases; Imperial College : Pierre degond

IRIT: FLorence Sedes, Geoffrey Roman-Jimenez

CHLA / USC: Rusty Lansford

IBMB : Elisa Marti


  • Bénazéraf B..
    Dynamics and mechanisms of posterior axis elongation in the vertebrate embryo
    Cellular and Molecular Life Science
    2018 Sep review
  • Bertrand Bénazéraf*, Mathias Beaupeux, Martin Tchernookov, Allison Wallingford, Tasha Salisbury, Amelia Shirtz, Andrew Shirtz, David Huss, Olivier Pourquié*, Paul François*, Rusty Lansford*.
    Multiscale quantification of tissue behavior during amniote embryo axis elongation
    2017 Dec * co-coresponding authors
  • Huss D., Bénazéraf B., Wallingford A., Filla M., Yang J., Fraser S., Lansford R.
    A transgenic quail model that enables dynamic imaging of amniote embryogenesis.
    2015 Aug
  • Bénazéraf B, Pourquié O. .
    Formation and segmentation of the vertebrate body axis.
    Annual Review in Cell and Developmental Biology
    2013 Jun review
  • Bénazéraf B, Francois P, Baker RE, Denans N, Little CD, Pourquié O..
    A random cell motility gradient downstream of FGF controls elongation of an amniote embryo
    2010 Jul




Université Paul Sabatier
118 Route de Narbonne

31062 TOULOUSE Cedex

Annuaire général