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Abstract

Based on a qualitative analysis of ODE systems, the dynamic piepef alternative predateprey models with predator-
dependent functional response have been coedparorder to study the role that predatoterrference plays ithe stallisation
of trophic systems. The models considered for interference have different mathematical expressions and different conceptua
foundations. Despite these differencesytpve essentially the same ditative results: when interfence is low, increasing it
has a positive effect on asymptotic stability and thus on the resilience of the biological system. When it is high, itis the contrary
(with logistic prey growth, increasing the interference parameter ensures stability but leads to very small predator densities).
Possible consequences on the evolution of the interference level in real ecosystems are dikzageeliis article: R. Arditi
etal., C. R. Biologies 327 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

L’ interférencemutuellestabilise-t-elletoujour sladynamique proie—pr édateur ? Une compar aison demodéles. A I'aide
d’'une analyse qualitative de systemesd®, ont été comparées les propriétés dympres de modeles proie-prédateur diffé-
rents, incluant une réponse fonctionnelle prédateur-dépendante, dans le but d’étudier le réle que joue l'interférence mutuelle
dans la stabilisation des systémes trophiqlies modeles d'interférence considéoés des expressions mathématiques et des

fondements conceptuels différents. Malgré ces divergeiisemnnent pour I'essentiel les mémesultats qualitatifs : lorsque
le degré d'interférence est bas, son augmentation exerceairiagfbrable sur la stabilité asytotique et donc sua résilience
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du systéme biologique. Lorsqu'il est élevé, c’est le contraire (avec une croissance logistique des proies, augmenter le parametr
d’interférence maintient la abilité, mais conduit @e tres faibles densités des prédesguSont ensuite discutées les consé-
guences possibles sur I'évolution du degré d’interférence dans les écosystemeRorgetiter cet article: R. Arditi et al.,

C. R. Biologies 327 (2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction initiated by Hassell and Varley has been very useful
for empiricists, allowing us to assess interference with
In the founding models of predator—prey theory the single parametex.
in the 1920s (the Lotka—\olterra model in continu- Using a mechanistic appach to describe predator
ous time or its Nicholson—Bailey equivalentin discrete behaviour, Beddingtof6] developed an explicit math-
time), it was assumed that the instantaneous rate of en-ematical model to describe the effect of individual
counter of prey by a single predator individual was in- interference on the consumption rate. Extending the
dependent of the predator density. More formally, this assumptions of Holling’s ‘disc mode], the decline
rate, known as the ‘searching efficieneyis defined of the predator efficiency is due to the time wasted
as the proportion of prey encountered per predator per by predator encounters. Quite independently, DeAn-
unit of searching time. Although this assumption was gelis et al.[7] developed almost the same model with
occasionally questioned (e.g., by Volterra him§g}j, a perspective in predator—prey population dynamics.
it was only much later that Hassell and Varlggj] It is worth mentioning that DeAngelis et al. followed
provided empirical evidere for an adverse influence a phenomenological approach on the scale of popula-
of predator density on the searching efficiency. The tions, contrary to Beddington, who reasoned in terms
evidence rested on data on insect predators and par-of individual behaviour.
asitoids. A number of studies have investigated the effect of
Hassell and Varley suggested first that this effect mutual interference on population dynamics and popu-
was due to direct behavioural interference between lation stability. Hassell and Rog€®] and Hassell and
searching individuals but it was later shown that other May[9] studied the effect of the Hassell-Varley model
mechanisms (e.g., predator aggregation) could lead toon a discrete-time model of the Nicholson—Bailey
a similar effect (e.g.[3]). For this reason, we use in type. Free et al[3] performed a similar analysis with
this paper the word ‘interference’ in a generic sense, the Beddington model. Rogers and Has§&dl] pro-
designating any mechanism by which predator density posed another interaction model of the same kind as
depresses individual predatory performance. In this the Beddington model. DeAngelis et ] studied the
context, ‘density-dependence’ can be used as a syn-dynamic properties of a continuous-time autonomous
onym to ‘interference’. model incorporating their interference model. This
In their paper, Hassell and Varld®] quantified model was taken up recently by Hwafidl,12]to es-
the intensity of interference by a parameter the tablish that locally stable equilibria are also globally
negative slope of the log—log regression of search- stable, and that periodic orbits, if existing, are unique.
ing efficiency against predator density. However, their Further mathematical results on this model are pro-
estimates of searching efficiency ignored the satura- vided by Fan and KuanfL3] who studied the non-
tion effect that superabundant prey can have on preda-autonomous case and by Cantrell and Co$héy15]
tors[4]. Arditi and Akgakayd5] proved that this leads ~ who studied the persistea or extinction of species
to underestimation of the interference constardnd in spatially explicit reaction—diffusion models. From
that, using new estimates, interference was even morethese and other theoretical studies, and from some em-
frequent and more intense. The descriptive approachpirical evidence, a consensus has emerged to consider
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that interference has a stabilizing influence on popu-
lation dynamics (e.g[16, p. 383), although Hassell
and May[9] pointed out that there was an upper limit
on the interference constant beyond which the dynam-
ics became unstable.

In the present paper, we intend to perform a unified
and comparative analysis of the effect of the major in-
terference models on population dynamics. In particu-
lar, we will fully analyse the dynamics of a model that
incorporates the Hassell-Varley interference model to-
gether with Holling’s saturation in a continuous time
setting.

We shall focus on the study of model equilibria
and their asymptotic stability. This is motivated by the
usual assumption that mathematical stability of a triv-
ial equilibrium indicates popation extinction, while
a nontrivial equilibrium isindicative of the averages
of real population abundances. Weak, aperiodic fluc-
tuations or fluctuations correlated with environmental
changes suggest the existence of a stable nontrivial
equilibrium. Thus, the existence of a stable nontrivial
equilibrium is required, in practice, for the persistence
of the populations. However, even a stable equilib-
rium may sometimes lead to strong short-term fluctua-
tions[17]. Periodic fluctuations with no environmental
correlates are suggestive of limit cycles around an un-
stable equilibrium. But limit cycles may in practice
lead to extinction due to demographic and environ-
mental stochasticity, even though some of the most
popular records of predator—prey interactions concern
periodic oscillations of veebrate populations that are
not due to seasonal changes. A large limit cycle that
periodically brings either population close to zero im-
plies a high probability of its extinction, because of
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dN/dt = F(N) — g(N, P)P

d 1)
P/dt =eg(N,P)P —gP

where N and P are the densities (or biomasses) of
prey and of predators, respectively. The production of
prey in the absence of predators is described by the
function F(N), whereas; (N, P) is the functional re-
sponse (number of preys eaten per predator per unit
time). Natural mortality of prey is considered to be
negligible compared to mortality due to predation. The
constante is the trophic efficiency and predators are
assumed to die with a constant death eat&he func-

tion F will be taken either as the Malthusian growth
F(N) =rN or as the logistic model'(N) =rN (1 —
N/K).

Many questions in predator—prey theory, includ-
ing the question of interference between predators,
revolve around the expression that is used for the func-
tional response (N, P). The well-known models of
Lotka—\olterra

(LV) g(N,P)=aN

and Holling[4]

H Py =N
ST =TT NN

do not include interference since they do not actu-
ally depend on predator density. They are of the form
g = g(N) (termed ‘prey-dependent’ by Arditi and
Ginzburg[20]).

Using empirical estimas of the searching effi-
ciency a, Hassell and Varley2] observed that this
quantity declined with predator density almost lin-
early on log—log scales. Therefore, they suggested the

stochastic processes or simply because of external jm-model:

pacts that are not taken into account by the model.

We shall examine the effect of two main parame-
ters: first, the intensity of predator interference, as it
is generally suggested that it should be a stabilizing
factor [6,7,18] second, the prey productivity, as it is
generally suggested that it should be a destabilizing
factor[19].

2. Themodelsand their analysis

We consider deterministic aggregated predator—
prey models written in the following ‘canonical’ form:

HV)  a=aP™ (2)

This expression is dimensionally unbalan§2t] and
it should rather be written so that be the expo-
nent of a dimensionless quantity like, for example,
a(P/Py)~™, wherePy is the density of a ‘population’
consisting of a single predator in the whole habitat.
There is no loss of generality to choose the units for
measuring habitat surface so thigt= 1 and the orig-
inal expression can be used safely.

Hassell and Varley ignored saturation of the func-
tional response and used a Lotka—\olterra-type re-
sponse that was modified by replacing the attack rate
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a by Eq.(2): DeAngelis et al.[7] performed a stability analy-
. sis of the continuous-time dynamic modg) with the
(HVLV) g(N, P)=aNP functional responsgs) and logistic growth. In this pa-

If, however, saturation occurs (e.g., in the form of P€r, our primary aim will be to undertake a similar
a handling timeh), the Hassell-Varley model must ~analysis with the functional responses based on the
be introduced into Holling's type 1l model. This is Hassel-Varley model. It will be interesting to com-
the model that was actually considered in the work of Pare the dynamic properties generated by the two ap-

Arditi and Akcakayd5]: proaches, as there are no clear direct empirical argu-
ments favouring one or the other.
aNP™" Note that the BDA model tends to the ratio-
HVH N,P) = ——— 3 . . .
( ) 8( ) 1+ahNP—™ 3) dependent model if the interference parameteis

This work showed that this correction leads, in gen- arge, provided that predator density is not negligible:

eral, to higher estimates of the interference constant ~ the constant 1 in the denominator of £8) can then
In most cases considered [8], the value ofn was be neglected. Thus, the ratio-dependent model can be

found to be between 0.5 and 1 and, quite often, not considered as the limit of either the HVH model or
significantly different from 1. For the special case the BDA model when the interference effect becomes

whenm = 1, the functional response becomes ratio- Very strong. Note that the value = 1 in the HVH

dependeni20]: model corresponds to a large interference, while its
BDA equivalent is a very large value af. Since the
(RD)  g(N.P)= aN/P ) HVLV and RD models are special cases of the HVH
1+ ahN/P model, the analysis will focus on the HVH and BDA
In this case, interference haperfectly compensatory models. The results for those two special cases will
effect, while it becomes overcompensatingif- 1. If also be discussed.

m < 0, the model has generally been interpreted as de- N the special cases of zero interference parame-

scribing cooperation instead of interference. This case t€rs (i-., whenw = 0 or m = 0), both BDA and

will not be examined here. HVH models become the prey-dependent Holling
In contrast with Hassell and Varley’s empirical Model (H), or eventhe LV model ff = 0.

model, Beddingtori6] proposed a simple mechanism o

for interference. Extending Holling’s assumption that 2-1- Theisoclines

predators spent some timieon encounters with prey, ) ) ]

he assumed that they also wasted a timen encoun- Continuous-time models, as those studied here,

ters with other predators. This yields the expression: nave the advantage over discrete-time models that they
can be studied with the isocline method, thus provid-

g(N, P) = aN (5) ing a clear graphic perception of the dynamic prop-
’ 1+ ahN +aw(P — Py) erties. The zero isoclines define domains in the phase
where P is, as above, the ‘population density’ of a SPace(V, P) in which the population rate of change
single predator. This expression accounts for the fact d0€s not change sign. They give a straightforward
that a given predator cannot encounter itself. Note Way of finding the equilibrium (intersection of the iso-
that for w = (aPo)~L, this function becomes ratio- clines). They also give indications on the stability of

dependent. the equilibria and on the global behaviour of the dy-
Independently, DeAngelis et g7] proposed the  Namics. _ _ _
same model with purely phenomenological argu- In this section, we will establish some general prop-

ments, and omitting the constakg. Under reasonable erties about the shape of the predator isocline and its
conditions, this omissioshould be acceptable and we consequences on the dynamics. Additionally, a suffi-

will consider here only the simpler form: cient condition for stability will be stated. The prey
isocline depends on the production functi®aV) and
(BDA) g(N, P) = aN (6) will be studied later. The expression of the predator

14+ahN +awP isocline holds for all types of prey growth. In particu-
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lar, it does not depend on the potential productivity of This function is positive if and only i& — hq is pos-

the prey.

To find the predator isocline for the HVH model,

we just have to set:

aNP™™

dP/dt=e— 200
A = e NP

P—qP=0

hence, besides the trivial isoclin® = 0, there is a
non-zero one:
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itive. If this were negative, the predator would al-
ways decrease and could never persist. Biologically,
it means that the handling time and the death rate (i.e.,
the losses of time and energy) must not be too large
compared with the ecological efficiency. The quantity
e — hg can be considered the ‘net efficiency’ of the
metabolism of the predator. In the rest of the paper, we
shall always assume that it is positive,

e—hg >0 (7
Fig. la—e shows the shape of the predator isocline
(Isop) in the phase plan@v, P):

P (b)

IO L O
!
t
f
t
'

A
i
v
i

Fig. 1. Phase plane portraits with Malthusian prey growthylsmd Isg are prey and predator isoclines respectively, the arrows indicate the
vector field determined by the model on th®, P) phase plane:d) the prey-dependent case = 0), (b) the low-interference case < 1,
(c) the ratio-dependent case with explosiat), the ratio-dependent case with extinctiog), the high-interference case: > 1) and €) the BDA

model.
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if m = 0, the predator dependence disappears
from the expression for the functional response
and the isocline is a vertical line, as in all prey-
dependent model${g. 1a);

if 0 <m < 1, the isocline is a convex curve with a
horizontal slope at its origirHig. 1b);

if m =1 (ratio-dependent model), the isocline
is a straight line that passes through the origin
(Fig. 1c—d);

if m > 1, the isocline is a concave curve with ver-
tical slope at the originKig. 1e).

For the BDA model, the predator isocline is always
a straight line ig. If), since:

N
dP/di=e——* P _4qP=0
1+ahN +awP
implies:
—h 1
p=""N_ —
wq aw

As in the HVH model, conditior(7) is also nec-
essary in the BDA model for the existence of a non-
trivial equilibrium.

In the HVH model (except for = 0), at any
prey density, there are always predator densities low
enough that the predator can grow. In the BDA model
there is a thresholtYc = ¢ /(a(e — hq)), below which
the predator cannot grow. This expression is indepen-
dent of the interference constant This contrasts with
the HVH model, in which predator growth at low prey

density becomes easier when the interference para-
meter increases. Note that increasing the interference

constant has a negative effect on the domain in which

R. Arditi et al. / C. R. Biologies 327 (2004) 1037-1057

criteria) in two dimensions are:

TrJ <0; detJ>0

A general expression for the matxvalid for any
prey growth function, can be derivedgpendix A.

An interesting and classical result that can be deduced
from this expression is that, except when- 1 in the
HVH model, a sufficient condition for stability is that
the isoclines intersect in a portion of the prey isocline
where it has a declining slope. It must be pointed out
that this condition is not necessary in general. Only in
a prey-dependent model is this condition both neces-
sary and sufficient. Thus, when the functional response
depends orP, the equilibrium may be stable even if
the prey isocline has a positive slope.

Biologically, the fact that the prey isocline is de-
creasing means that with more prey, a smaller predator
density is sufficient to control the prey. This is due
to density dependence imé prey, and generates a
negative feedback that ensures stability. The lack of
density dependence in Malthusian growth is the rea-
son why the prey isocline is always increasing, except
form > 1 (seeFig. 1la—d).

The stability of the trivial equilibria(0, 0) and
(K, 0) is also important. It characterises the ability or
inability of the species to colonise the system. Gen-
erally, the isocline patterns allow us to study stability
graphically. In our case, the predator isocline shows
that in both the BDA and the HVH models (for<Q
m < 1), the predator can never become established
when the prey density is too small. In the BDA model,
this is the threshold effect, and in the HVH model with
0 < m < 1, the slope at the origin is horizontal, so the
region where the predatordreases becomes infinitely
small when the prey density tends toward zero.

the predator increases, by decreasing the slope of the 1, o50 general properties will facilitate the study of

predator isocline.

3. Remarkson stability

The local stability of an equilibrium can be studied
by analysing the Jacobiarof the system, i.e., the ma-
trix of partial derivatives o{1), calculated at equilib-
rium. In practice, a stable non-trivial equilibrium (with
sufficiently large basin of attraction) implies the per-

the different cases below, and will help to determine
the specificity of each.

3.1. Malthusian growth

In this section, we examine the case in which the
prey growth rate is density-independent (i.e., con-
stant). This Malthusian growth is important to study,
because it permito identify the cases in which sta-
bility is solely due to control by the predator. This is

sistence of both populations. The necessary and suf-particularly important in a biological control perspec-

ficient conditions for local stability (Routh—Hurwith

tive, since the prey (the pest) must be maintained at
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very low densities, at which the density dependence
modelled by the logistic model does not operate.

3.1.1. HVH model
The prey equation in the HVH model reads:

aNP™™
1+ahNP—™

Fig. la—e shows the shape of the isoclines for vari-
ous values ofn. The details of the analysis are given
in Appendix B

If e—hq > 0, there exists a unique non-trivial equi-
librium, except whem: = 1. It is given by:

1/(A-m)
o i)
er

1/(1-m)
pr=—=
<a@—4w)>

Whenm = 1 (the ratio dependent case), the only equi-
librium is (0, 0) (Fig. 1c and d), and according to the
values of the parameters and of the initial conditions,
there is either explosion of both densities (the preda-
tor does not control the prey and ‘follows’ the prey to
explosion) or convergence t6, 0) [22,23](the preda-
tor consumes all the prey and then dies of starvation,
which is the classical laboratory dynam[@4,25)).

A necessary and sufficient condition for stability
(seeAppendix Bfor details) is:

dN/dt =rN

q er

N* = _
a(e — hqg)

0< <m<1

Py (8)
It is a classical result that the Holling functional re-
sponse (i.e.n = 0) with a Malthusian growth for the
prey leads to an unstable equilibrium. This is because
the prey isocline is an increasing curve and the preda-
tor isocline is vertical fig. 1a). If m > 0, interference
can stabilise the equilibrium, provided that not too
large Figs. 1b and 3p Moreover, there is always an
upper limit for z, under which we have stability: re-
ducing the handling time contributes to stability by
facilitating prey growth control. In particular, when

h = 0, which corresponds to the HVLV model, the
equilibrium always exists and is always stable.

It should also be emphasised that for > 1
(Fig. 3b), the equilibrium is never stable. According
to the initial conditions, the is either extinction or
explosion, while when G< m < 1, interference has
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a stabilising influence, the interference parameter be-
comes destabilising whein > 1. This result had al-
ready been found by Hassell and M@y for discrete
time models.

It is also noteworthy that the effect of on the val-
ues of equilibrium densities depends on the parame-
ters. In particular, ifer > a(e — hq), the equilibrium
densities rise withn, when O< m < 1, and decrease
whenm > 1. If er < a(e — hq), itis the opposite.

3.1.2. BDA model
For the BDA model, the prey equation is:
aN
— P
1+ahN +awP

The isoclines are two lined={g. 1f) that intersect at
positive densities if and only if

dN/dt =rN —

e —hqg

w < (9)
er

(note that this is equivalent to the slope of the predator
isocline being superior to the slope of the prey iso-
cline). If this equation is not fulfilled, then there is
no non-trivial equilibrium and both densities explode.
Thus, contrary to the HVH model, there is an up-
per limit for the interference parameter beyond which
there is no non-trivial guilibrium. In common with
the HVH model, a too intense interference between
predators leads to explosion (unstable equilibrium, the
predators are not able to control the prey), as does a
too-high prey growth rate.

If the equilibrium exists, it is given by

. q
" ale — hg — erw)
* er
T ale— hq — erw)
Raising the parameter increases these values. Un-
like the HVH model, this tendency does not depend
on the other parameters. The stability criterion is:

e—hqg

w <

(10)
e

Thus, interferencev and efficiencye are stabilising
factors, whereas thhandling time.z has a destabil-
ising influence. Note that the upper limit on the in-
terference parameter beyond which the equilibrium is
unstable coincides with the upper limit for existence
of the equilibrium.

er
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In sum, the same qualitative conclusion about the the equilibrium is stable, it is a global attractor. Other-
effects of the parameters on stability emerges from wise, the global attractor of the system is a stable limit
both models: the interference parameter is stabilising cycle that emerges from the equilibrium as a result of

up to a certain limit, beyond which there is instabil-

ity or even disappearance of the positive equilibrium.

Parameters, h and ¢ are destabilising, while is
stabilising. Moreoverga (or «) has no effect on sta-
bility in either model. A difference on the effect of

the interference parameter is that, in the BDA model,

a Poincaré—Andronov—Hopf bifurcation at the critical
valueK = (e + hq)/ah(e — hq).

For 0<m < 1, there is one non-trivial equilibrium
(seeFig. 2b—c). WhenK goes to infinity, it tends to
a limit identical to the Malthusian growth one. If con-
dition (8) is fulfilled, then the equilibrium is stable. If

increasing the interference parameter rises the equi-not, there is a limit valu&p such that fork < Ko itis

librium densities when it isinder the threshold value
w = (e — hq)/er, while in the HVH model, the effect
depends on the parameter values.

3.2. Logistic growth

In the case of logistic growth, the system cannot

stable and folK > Ko it is not. Again, if the equilib-
rium is stable, it is a global attractor. Otherwise, there
is a stable limit cycle that becomes a global attractor.
Note that forh = 0, which corresponds to the original
Hassell-Varley model, we always have stability (see
Appendix Cfor details).

For m = 1, besides equilibrig0, 0) and (K, 0),

explode because the prey cannot grow beyond its car-there is a non-trivial equilibrium if

rying capacityK. If an equilibrium is stable in the

logistic case and not in the Malthusian case, its sta-

bility is basically due to the limitation of the prey by

ale—hg) <re

The equilibrium densities are proportional ¥ and

its nutrients, and neither by the control of the prey by are given by:

the predator, nor by feedback on the predator due to

interference.

3.2.1. HVH model
The prey growth equation is now:

dv N — N/K) aNP—™
d 1+ ahNP™

Fig. 2a—f shows the different shapes of the iso-
clines. The details of the analysis are giverppen-
dix C.

The casen = 0 is the classical model by Rosen-
zweig and MacArthuf26] (for its analysis see, e.g.,
[27]). In summary, there is a non-trivial (positive)
equilibrium if:

7
a(e —hq)
Otherwise, the predator cannot persist &Rd0) is a

global attractor. This equilibrium is stable if and only
if:

<K (12)

q (e+hq)
— <K< —
a(e —hq) ah(e — hq)
which is equivalent to say that the equilibriumis on the
decreasing branch of the prey isocline (5&g 2a). If

(12)

N*:K<1— a(e_hQ)>
re

P _ N* a(e — hq)
q

The non-trivial equilibrium is stable if and only if:

et (s (0 1Y)
e e o

This condition is independent &. Moreover,; > «

is a sufficient condition of stability (in the Malthusian
case,r > «o always implies explosion). In the ratio-
dependent case, the prey is controlled by its carrying
capacity only. It is somewhat puzzling that in this case
r is a stabilising factor, which seems contradictory
with the case O< m < 1 with a Malthusian growth.
This is to be discussed in the next section.

If the equilibrium is stable, stability is not always
global[22,23] According to initial conditions, there
is either convergence t, 0) (when the initial prey
density is too small compared to the initial predator
density), or to the non-trivial equilibrium (see Fig. 5.3
in [22]). Note that if there is a stable limit cycle in
the ratio-dependent model, it is not always a global at-
tractor eitherf22,23]. Thus, depending on the model
parameters and on the initial values, the instability of
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Fig. 2. Phase plane portraits with logistic prey growt):i§ the prey-dependent casb) &nd €) are low-interference casés < 1) without or

with a hump in the prey isoclinedj—(f) are high-interference cases with either two or no non-trivial equilibgpaiid f) the BDA model, in
the latter case the ‘limited-predation’ case.

the non-trivial equilibriumleads either to species ex- sian value (sedppendix Cfor details). The lower

tinction or to sustained oscillations. equilibrium is always unstable and the higher always
For m > 1, there is a critical valu&1(m) such stable.

that for K < K1(m) there is no non-trivial equilib-
rium (seeFig. 2e) and forK > K1(m) there are two
non-trivial equilibria Fig. 2d and f). The greater prey  according to initial conditions, the dynamics converge
density at equilibrium asymptotically tendskowhen either to the higher equilibrium, or t@, 0) (in partic-

K — 400, and the smaller decreases to the Malthu- ular when prey density is too low, ségy. 2d and f).

WhenK < K1(m), (0,0) is a global attractor and
the whole system becomes extinct. Whén- K1(m),
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Finally, some words should be said about deter-
ministic extinction in the HVH model. The phase
portraits show that both populations can go extinct
for certain initial conditions whem > 1, but never
for m < 1. The phenomenon of deterministic extinc-
tion was first studied in the context of the ratio-
dependent modgR2,28,29]but criticised for not be-
ing ‘generic’ (i.e., using the intermediate original BDA
model(5), deterministic extinction only occurs for the
limiting casew = (aPy)~1). Our analysis of the HVH
model (which is another intermediate model) shows
that this phenomenoniis ‘half-generic’ in the sense that
it happens for alln > 1. However, the important ob-
servation is that for values @i < 1 but close to 1, the
dynamics can come very close to the axes, and extinc-
tion may occur due to demographic or environmental
stochasticity.

3.2.2. BDA model
Now the prey growth equation is:

aN aN
— =rN1-N/K)——————P

dr 1+ahN +awP
The isoclines of this model are drawnkig. 29 and h.
Again, the details of the analysis can be found\m
pendix C A necessary and sufficient condition to have
a non-trivial equilibriumis:

q
—_— <
a(e —hq)
This condition is identical t¢11) in the HVH model
for m = 0. If it is not fulfilled, the dynamics converge
to (K, 0).
The non-trivial equilibrium is given by:

K —h
N*:—(er—e 1
2er w
—hg\? e
(o) )
w Kwa
P* = (ae —hq)N* —q)

wagq

If w < (e —hq)/(er) (which is also conditior{9) of
the equilibrium positivity in the Malthusian case), then
N* tends to a limit wherk — +oo:

q

N =i ————
a(wer — e+ hq)

]
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If w> (e — hq)/er then, for highK values:

(-2

Thus, when the condition for existence of an equilib-
rium in the Malthusian case is fulfilled, it corresponds
to the limiting case wherk — +o0. The boundary
valuew = (e — hq)/(er) is the equivalent ofn = 1

in the HVH model: beyond it, the prey is no longer
predator-controlled but resource-controlled.

Note that whenw — +o00, P* — 0 (becauseV is
bounded with respect t@): as in the HVH model,
when interference is too large, the predator density at
equilibrium is so low that extinction is almost certain.

The non-trivial equilibrium is stable if and only if:

o2 (sroft )i

In particular, ifw > h/e, it is always stable, because
1—- N*/K > 0. If the equilibrium is stable, it is a
global attractor. Otherwise, there is a stable limit cycle.
The same type of concdions about both equilib-
rium and stability arise in both models. Increasing
interference is at first stabilising, then it prevents the
predator from controlling the prey and, eventually,
produces the extinction of the predator, even if, math-
ematically, we have a stable equilibrium. There is a
difference concerning the existence of a non-trivial
equilibrium. In the HVH model, whem < 1, we al-
ways have an equilibrium, no matter what the values
of the parameters are (provided that g > 0). In
the BDA model, on the contrary, there is a critical
value of K under which the predator cannot persist be-
cause of insufficient prey supply. However, in practice,
whenm is small, the predator density at equilibrium
quickly tends to zero wheR decreases, and we may
consider that we should hawextinction because the
conditions of validity of the continuous determinis-
tic models are not fulfilled anymore. Therefore, this
difference between the models is not qualitatively sig-
nificant. Another feature of the BDA model is that it
yields conditions of existence of the non-trivial equi-
librium quite similar to the HYH model whem = 0.

N* A e—hq

(13)

erw

4, Effectsof K, r, m, w on stability

Let us consider a predator with fixed valuesaof
(o in the HVH model) i, ¢ ande. These can be con-
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sidered as intrinsic parameters that are assumed not tccause under high value, the prey is able to escape
depend on environmental factors. We will focus now the control of predation. However, in the simple logis-
on the effects of the crucial parametets r, m, w tic equation, increasing makes only the convergence
on stability. Parameter& andr relate to the growth  to the carrying capacitX faster. Thus, increasing
of the prey, and can be controlled experimentally (for should have a stabilising influence in the neighbour-
instance by modifying the input of nutrients) or influ- hood of the carrying capacity .
enced by the environment (for instance by tempera-  Fig. 3 shows the shape of the domains of stability
ture). Parameters andw have the same phenomeno- in the plane(r, m) for the HVH model Fig. 30 and d),
logical function, they represent the degree of interfer- and in the plandr, w) for the BDA model Fig. 3a
ence in the two models HVH and BDA, respectively. and c).
They can be considered to be intrinsic to the predator, Inthe HVH model, conditio§8) provides a straight-
and their effect must be studied because interferenceforward way of getting the domains of stability in the
is the topic of this paper. Malthusian caseHjig. 3b). In the logistic case, the lim-
The Paradox of Enrichmeifil9] is based on the its of the domains are irdctable analyticallyFig. 3d
mathematical finding that increasiighas a negative ~ shows how these domains, obtained numerically, look
effect on stability in many models, which contradicts like (see alstAppendix D). There is a stable domain
natural observations. On the other hand, interference for smallr, and another one for large The interpreta-
between predators is thought to be a stabilising factor, tion is that a large maximum growth rate ensures a fast
because it reduces predator reproduction as predatorgeturn to equilibrium as in the simple logistic equation
become more numerous and thus acts as a negativgfor large r, the equilibrium is close t&K: the prey
feedback. The effect of the maximal prey growth rate is controlled by its carrying capacity and not by the
r on stability is often thought to be destabilising, be- predator). For smakl, the dominating phenomenon is

BDA HVH
= W m
2 b
g @ 1 unstable (b)
50
g no equilibrium '
g stable !
= stable '
§ h unstable
< T T |
> € unstable I
| |
e— hq r e— hq r
w h m h
= no equilibrium
3 tabl © (
5 stable two equilibria
g 11—
a) stable
5 unstable
I unstable
‘ r

ale— hg)

e

Fig. 3. Existence and stability of a positive nontrivial equilibrium in relation to growthrrated interference parameter (BDA model, @)
and €)) or m (HVH model, @) and @)). Figures &) and ) are for Malthusian prey growth¢) and @) for logistic prey growth. The model
parameters ar& =70;a =« =0.5;4h=0.1;¢ =0.2; ¢ =0.9.
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BDA

h stable (a)

stable

unstable

no equilibrium

q e +hq
a(e- hq) ah(e- hg)
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HVH
M no equilibrium
(b)
two equilibria
rh W\
- h
€=M stable
unstable K

Fig. 4. Existence and stability of a positive nontaivequilibrium in relation to carrying capacity and interference parameter(BDA model
with parameter values = 2.0; h = 0.5; ¢ = 0.3; ¢ = 0.3; r = 1.0, (@) andm (HVH model with parameter values= 0.5; h = 0.1; ¢ = 0.2;
¢ =0.9;r =10, (b)). The dashed line irb) is the asymptotic limit of the curved line separating the stable and unstable regions.

the stabilising effect of the interference that controls
the predator. The prey is controlled by the predator,
and a too large value of prevents this control. When
m > 1, there is a threshold value ofbelow which
there is no equilibrium, and above which there are two
equilibria, one unstable, and one stable.

In the BDA model, there is no stability domain for
smallr values. Increasing parametenas a stabilising
influence. The domains are drawnkig. 3¢ (see also
Appendix D).

An important remark must be made about the pos-
itive effect of r on stability. Classically, we use the
logistic form for the prey growth rate assuming that
the time delayl’ of the feedback of density on repro-
duction is negligible. However, this is only true when
the product T is small. Ifr is large, this amplifies the
effect of the time delay, and instability aroukdmight
appeaf30] even for very small values df. This sta-
bilising effect ofr can thus be seen as a mathematical
artefact.

The effect ofK on stability is essentially the same
in both models. Either the equilibrium is stable for
all K, or there is a limit onK beyond which it be-
comes unstable (sédg. 4a and b). The results for the
Malthusian case may be deduced just by setfng
+00. There is no discontinuity at infinity fok . Fig. 4
shows the shape of the stability portraits in the plane
(K,m) for the HVYH model, and in the plang, w)
for the BDA model.

In the HVH model, whenn < 1, there is always
stability for smallK, and depending on the values of
the parameters, either there is an upper limitkofor
allm orthere is aregiomc < m < 1 in which there is
always stability (withnc =rh/(e — hq), seeFig. 4b).
Whenm > 1, there is a threshold ok below which
there is no equilibrium, and above which there are two
equilibria, one unstable, and one stable.

In the BDA model, we have a lower limit oK
for existence of a non-trivial positive equilibrium. For
w > h/e, we always have stability. For smaller,
there is an upper limit orK for stability (similar to
condition(12) whenw = 0). One can define a curve
w(K) of the lower limit for stability for a givenk'.

It is an increasing curve with a limit wheki — +o0
which is less tha /e (Fig. 4a).

In conclusion, both models lead to qualitatively
identical results. The most important difference be-
tween the models is the effect of the interference para-
meter on stability. In the BDA model, there is always
a value of the interferemcparameter above which
the Paradox of Enrichment disappears. In the HVH
model on the contrary, the existence of the disconti-
nuity atm = 1 implies that a too strong interference
leads to instability of the dynamics, at least for small
K, whereas, for values < 1, interference is stabil-
ising, as in the BDA model. However, conditi¢h3)
implies that, with a too great interference parameter
the densities at equilibrium are proportional to the car-
rying capacityk . Even if this has no effect on stability,
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it shows that even in the BDA model, a large interfer- mentioned in the introduction, the HVH model was
ence makes the predator unable to control the prey.  proposed after empirical evidence of such a form
of the functional response. It is widely used in the
study of interfering populations, from insects to ver-
tebrateq40]. In a direct comparison, it won over the
The two general models for interference studied BPA model describing soil fauri@8]. However, up to
here have very different mathematical expressions and"OW: this form was rarely incorporated into dynamic
very different conceptual foundations. Despite these M0dels at the level of populations. No easy empirical
differences, it is quite satisfactory that they give es- €St can be made for discriminating between the two
sentially the same qualitative results concerning the classes of models studied here, but varying the nutri-
effects of the parameters on the stability of the system. €Nt input, for instance, gives a way of identifying the
The interference parameter has a peculiar characteris-Predator isocline and hence, indirectly, the functional
tic: when it is low, increasing it has a positive effect €Sponse and the interference parameter. Indeed, the
on the stability and thus on the persistence of the sys- values of the densities at equilibrium, plotted in the
tem. When it is large, it is the contrary (with logistic phase space, must all be on the predator isocline. This
growth, increasing the interference parameter ensuresmethod can be applied when it is difficult to measure
stability, but leads to very small predator densities). ~ Predator consumption directly. An advantage of the
Another important point is that the Paradox of En- HVH model is that the predator isocline is sufficient
richment[19] still holds in both types of model for ~ to determine the interference parameter, while in the
small values of the interaction coefficients. The ob- BDA model, one needs to identify other parameters to
servation that diversity decreases in highly productive Mmeasure the interference parameter.
sites in both experimental manipulatiofgl] and in Other considerations than experimental ones can
situ recordings (e.g[32,33] has led to many theories ~ also help determine which model is the most proper
aiming at explaining i{34]. Rosenzweid34] argues to use. An argument that is raised against the Hassell-
that the effect of the Paradox of Enrichment for preda- Varley and ratio-dependent models is that they do not
tion (and of its equivalent for competitig85]) acts on rest on mechanistic arguments. However, it is interest-
a short time scale before natural selection occurs, anding to note that in the modelling of bioreactors (that
could provide an alternative to the more popular inter- describe processes that are close to predator—prey in-
pretation, based on Tilman’s competition the{8¢]. teraction: the prey is the substrate, the predator the mi-
Is it relevant to take interference into account in Croorganism), no mechanical approach has ever been
the models? Which values of interference are to be used to find a form for the functional resporfgd,
expected in nature? Since the very beginning of in- 42]. On the contrary, the approach has always been en-
terference theory, it was pointed out that the values tirely empirical, even though the processes should be
found in the laboratory could not be extrapolated to much simpler than in a predator—prey system. In fact,
field population§36,37]because densities used in the the HVH model is satisfactory for several theoretical
laboratory were far higher than in the field. However, reasons. An advantage of using a functional response
some field studies reported values of the parameter  of the formg(N P~™) is that, with a small number of
higher than 0.5 and even higher than 1 (examples areassumptions about the shape of the functorit is
given in[18,38,39). Free et al[3] suggested that this  possible to obtain interesting qualitative predictions.
was not due to direct interference, but was rather a Moreover, the parametet can be easily interpreted
consequence of the tendency of the predators to aggre-and has been directly measured in various experiments
gate in patches with high prey density. As mentioned (examples ir{5,18,40,43]. Some authors pointed out
in theIntroduction, we disregard in this paper the pre- that the Hassell-Varley model did not accurately rep-
cise mechanisms leading to interference, but we canresent the results of some experiments: they seldom
conclude that there are field situations where we needyield straight lines in the logy—log P plane (e.g.[3]).
a high interference parameter to explain the dynamics. However, the BDA model does not do any better here.
The question of which of the models studied here Another advantage of the HVH model is that there is
should be used in practice must be addressed. Asa fixed boundaryz = 1 that corresponds to the value

5. Discussion
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of the interference paramestabove which the predator  that these situations should be rare in the field: popula-
can never control the prey. In the BDA model, on the tions with an interference parameter larger than 1 are
contrary, this value depends on the other parametersat risk of becoming unstable if the carrying capacity
(condition (10)). Moreover, the valuen = 1 corre- of the prey is too low (e.g., in a ‘bad year’). Moreover,
sponds to the ratio-dependent model, which can nat- predator equilibrium densities rapidly decrease when
urally be interpreted as the boundary over which inter- m rises. Given that fom < 1, condition(8) shows that
ference leads to overcompensation (increasing preda-the interaction between predators is a stabilising fac-
tor density leads to a loss pgr capita consumption tor, one could thus argue that evolution has selected
more than proportional). species of predators that have values:aflose to, but
In both HVH and BDA models, the ratio-dependent smaller than 1. This could be an explanation of why
model is obtained with a high interference. It seems Arditi and Akcakaya[5] found that, in many sets of
logical that a ratio-dependent functional response experimental datag was close to 1.
would arise when interference between predators is  Finally, we have seen that in both models, below
strong (i.e., the quantity of prey eaten per preda- large values of the interaction parameterdr w), the
tor only depends on the relative abundance of prey prey density is proportional (or nearly proportional)
and predators). Indeed, a ratio-dependent consump-to K. This means that, as individual selection tends
tion means that there is prey sharing among predator to favour high values of this parameter, control by the
individuals. This phenomenon is directly related with lower trophic level ought to be common. However, it
interference (see preceding paragraph), which pre-can be physically impossible to achieve high interac-
vents each predator to behave as if there were no othertion, as it is the case for many herbivorous zooplankton
predators, which is the case in prey-dependentmodels.species, which are known to have a significant effect
We will conclude with a few evolutionary specu- on phytoplankton density. Parasites are also known to
lations suggested by the effects of the parameters onhave a significant effect on the control of some popu-
stability. Regarding the predator parameters other thanlations, and they are likely to have a small interference
interference, the interest of both the individual and of parameter. Thus, predators that can achieve a high (di-
the population consists in having high searching effi- rect or indirect) interference should not control their
ciency, high conversion efficiency, low handling time, prey: this implies bottom-up regulation. Predators that
and low mortality. All these parameters have monoto- cannot interfere much should lead to top-down regula-
nous effects on predator population fithess. This is def- tion.
initely not the case for the interference parameter. Both
models studied here predict thgt bOth. _too high_anq too Appendix A. Derivation of the Jacobians and of
low mterferencg should lead to |n§tabll|ty or e'XtII’.]C'tIOI’] the local stability criterion
of the population. However, the interest of individu-
als is always to increase its interference with the other A.1. HVH model
predators, e.g., being more aggressive to obtain more ) )
food, or aggregating in patches with high prey den- For the HVH model, the dynamical equations are
sity [3]. The results obtained here imply that this ten- Of the form:
dency would eventually lead thg pre_d_ator p(_)pulation dN/dr = fx(N, P) = F(N) — g(NP~™)P
to collapse. Although some studies giving estimates of o
the parametem using the Hassell-Varley formalism dF/df = fp(N. P) =eg(NP™")P —qP
report values ofn larger than 1, our analysis suggests The Jacobian of the system is giverHig. 5.

J— |:3fN/3N afN/3P:|
afp/ON dfp/oP
F/(N)— PYg/(NP~™) N P~Mg/(NP~™) — g(NP~™)
|: epl=mg/(Np—m) eg(NP™™) —emNPf’”g/(Nme)—q]

Fig. 5.
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F/(N*) _ aP a?hN P wa’N P _ aN
J— I+awP+ahN (14awP~+ahN)? (I+awP+ahN)2 I+awP+ahN
eaP _ ea’hN P _ ewa®N P + eaN —q
I+awP+ahN (I+awP~+ahN)? (I+awP~+ahN)2 I+awP+ahN

Fig. 6.

We will use that at the non-trivial equilibrium, we
haveg(NP~) =g /e because #/dt = 0.
Moreover, using the type Il (saturated) formgf
b o

1+ ahf (1+ah9)2>

we get at equilibriuniV P~ = g /a(e —hq). Since we
are only interested in positive equilibria, this implies:
e — hg > 0. Together with

g0) =

(With g 0) =

o
(1+ haNpP—m)2

= G 6P

_ (a(e —hq))?
- 2

g'(NP™™) =

e

the Jacobian at the non-trivial equilibrium (if it exists)
is:

_ 2
g | P = P g1 m o m ]
pl-m (oz(e;gq)) —m%(e — hq)
(A1)

Form > 1 this Jacobian has the sign structure:
* <0

o =)

From the implicit function theorem, we know that
the slope of the prey isocline (expressed withas
a function of N) is given by—(dfx/dN)/(0fn/0P)
and sincgdfy/d P) < 0, a negative slope ensures that
(0fn/9N) < 0, whichin turn results in a sign structure
with TrJ < 0 and def > 0. Thus, a negative slope of
the prey isocline guarantees stability of the non-trivial
equilibrium.

Note that this result can be generalised for any sys-
tem whereg has the formg(N P~™) provided that
0<m < 1, and tha be an increasing concave func-
tion with g(0) = 0 and 0< g’(0) < oo. To see this, all
we have to do is to find the sign of:

Afn/dP =mNP g (NP™™) —g(NP™™)

The derivative of the functiom — mxg’(x) — g(x)
is mxg”(x) — (1 —m)g'(x). If we assume thap is
concave (i.eg” < 0) and increasing (i.eg’ > 0) and
0 < m < 1, then this latter expression is negative.
The functionx — mxg’(x) — g(x) thus takes nega-
tive values forx > 0, because it is a decreasing func-
tion that takes the value 0 at= 0. In conclusion,
if the prey isocline decreases at the equilibrium, then
(0fn/9N) < 0 and thus the stability criterion is met.

A.2. BDA model

Now the Jacobian is (sdé€g. 6).
Using that at equilibrium

aN 1 and
l+awP +ahN e

ap — F(N)/N
1+awP +ahN
we get:

—hg F(N F(N)
J= F/(N)_¥T) %(wT_l) (A 2)
L e—hpt? —qu '
N N

Note that we havéfy /0 P < 0 because F(N)/N
=awP/(l4+ahN +awP) < 1 at equilibrium. The
same stability condition as in the HVH model can thus
be stated.

Appendix B. Derivation of the isoclinesand
equilibrium propertiesfor Malthusian growth

Let F(N)=rN.
B.1. HVH model

The prey isocline is given by

1
N=— (P —rP"
ahr

and the predator isocline by

. q
T a(e— hq)

m
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Since we are only interested in systems that have a Thus:
non-trivial equilibrium, the predator isocline must pass
through the positive quadrant of the phase plane. We TrJ =

will thus further assume here that- hg > 0. Three

g(rh —m(e — hq))

cases have to be distinguished with respect to the value jo; _ , <g> (e —hg) [_mh_q Cd—ma mh_CI}
e e

of m (presented graphically in theV, P) phase plane,
seeFig. 1):

— if 0 <m < 1, the prey isocline implicitly defines
a monotonous concave function §f € [0, +oo]
that increases frontr/a)Y A= to +o00, while
the predator isocline is either a vertical lite =
0) or a convex increasing function through the ori-
gin (Fig. la and b);

— if m =1, both isoclines are straight lines through
the origin.e > hg anda > r are required for

- <%>(e—hq)(1—m) (B.1)

A necessary condition for local stability is det 0,
i.e.m < 1. The condition for the tracéTrJ < 0) is
equivalent to:

rh
>
e—hqg

me

B.2
<y tma (B.2)

them to pass through the positive quadrant; two B.2. BDA model
cases may be distinguished according to the slopes

of the two isoclinesgr > a(e — hg) ander <
a(e — hq); in both cases, there is either extinction
or explosion, dpending on the initial conditions
(Fig. 1c and d);

— if m > 1, both isoclines are essentially non-linear
(seeFig. 1e); note that, due to the fact that the
prey isocline crosses the-axis in the origin and
in *%/r /o, there is only a bounded domain inside
which the prey decreases.

The non-trivial equilibrium is

ale —hq —erw)’ q

and it exists if and only ifv < (e — hq)/er. Note that
this implies 1—- rw > 0. The prey isocline, given by

__r(1+ahN)
T oa(l—wr)

The shape of the isoclines suggests that there isis a straight line with positive slope and is shown in

one and only one non-trivial equilibrium provided that
m # 1. Analytically, we obtain:

1/(1—m)
q er
Nt=— —
er (oz(e — hq))

o\ L/@-m)
Pr=(——mr
<Ot(e - hq))

Note that the ratioN*/P* is equal to the value
q/(er) and thus does not depend eithercoor .

Fig. 1e suggests that the non-trivial equilibrium is
never stable ifn > 1. We can see graphically that de-
pending on the initial conditions in the neighbourhood
of the equilibrium, a trajectory can either explode to
the infinity or converge t@0, 0), as in the case: = 1.

At the equilibrium, usindA.1), we get:

s rE o —HAm 4 m)
| r(e—hg) —m(e - hq)

Fig. 1f.
Using(A.2) with F(N) = r N yields the expression
of the Jacobian

hq
J=| T
|:r(e—hq)

and the criterion of local stability resolves to

L (wr — 1):|

—qwr

e —hqg

—<<w<
e er

Appendix C. Derivation of theisoclines and
equilibrium propertiesfor logistic growth

Let F(N) =rN(@ — N/K). We will first discuss
the general form of the istines and then discuss ex-
istence and stability of the nontrivial equilibrium.
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C.1. HVH model defined. To study the shape of the curve, it is more
illustrative to make qualitative remarks than to try to

Since the results fan = 0 are classical, we shall  study its derivative.

only deal withm > 0. We will refer to the isocline as a set of two functions
Since the predator isocline remains the same as in N = ¢_(P) and N = ¢+ (P). The following remarks

the case of Malthusian growth, we only have to discuss can be made:

the form of the prey isocline, which is now given by:

- ¢-(0)=0andp+(0) = K;

@NZ + r(iP’" - ah)N +aP —rP" =0 — @_ increases for smalP; this is because the term
K K in P under the square root dominates the terms
This expression can be rewritten as: in P™:
1 — @_ only crosses the ax&/ = 0 in two points:
N=¢+(P)= |:r (ah - —P’") P =0 and P = (a/r)Y™=D; peyond this do-
2rah K main,¢_ < 0 if it exists;
1 2 Arah -9y <K (_se_er_1 in Eq.C.1); it tends toK whenP
+ r2<04h - —Pm> - @P- rP’”)} tends to infinity.

(C.1) No trivial criterion can determine if the expression
Let first 0< m < 1. There are two possibilities: under the square root ¢C.1) becomes negative or

_ _ not. However, it can be said that it can never happen
— (@hK)¥™ < (r/a)™; ¢_ is always negative and  for P > (a/r)Y/™~D, whatever the parameters are. It

the isocline is given by only, which is posi- s easily seen from E(C.1) - a graphical argument
tive betweenP =0 andP = (r/ot)l/(l_m_) where is shown inFig. 3 — that for K sufficiently large it
it decreases fromV = K to N = 0 (seeFig. 2v); never happens. On the contrary, whemK )™ <

— (@hK)t™m > (r/a)™;agraphicalargumentshows  (q/r)Y/m=D e, for sufficiently smalk values, the
that the expression under the square root becomesexpression becomes negative in a bounded interval

zero at some valu® wherep_ andg, are posi-  of 10, +o0] containing(ehK)Y"™. Again, at the end-
tive and equal, and that corresponds to a maximum points of this intervalp_ = ¢...

of the isocline as expressed &as a function Now one can have an idea of the possible shapes of
of N. Fig. Zc shows that case. the isoclines in théN, P) phase planeFig. 3e shows

the case of lowk values when there is no equilibrium,
Let nowm = 1. This case, better known as a ratio- and Fig. 3d the case of highk when there are two
dependent model, has been studied extensively (seeequilibria, and expressioC.1) is defined for allP.
main text for the references), so we will only sum- The intermediate case (two equilibria and a domain
marise here the results. The predator isocline is always where expressiofC.1) is not defined) is represented
a straight line through the origin. For the prey isocline, in Fig. 3.

two cases arise: The predator and the prey equation resolve to

that passes through the trivial equilibtia 0) and q K
(K, 0). In that case, a non-trivial equilibrium ex-
istsifa(e — hg) < re;

— if @ < r then it is a decreasing curve defined on ) q (ae—ahq 1/m
[K =%, K] that passes througtk', 0) providing N**— KN*+ K—<7N*> =0 (C.2)
the existence of the non-trivial equilibrium. er 1

This equation is of the form:

_ . . - - _ . _ h N
if o« > r then the isocline is a parabola-like curve  ,u _ @e —heq ZN(l— _)
q

respectively. Combining them gives the equation:

Finally, letm > 1. Eq.(C.1)still holds, but now we ) 1 1
can see that for large, positive values ofv canbe ~ ¥(N.K,y)=N?—KN+Kyp""N'" =0 (C.3)
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To study the stability, EqA.1) implies:

J_{«l-z%)-wmw —%(1—m+m’%f>}

%
_ —ahq)
eP*l m (ae—ahg
we?

—Lm(e—hq)

Using again the equations above, we get the following
relation:

r(1—2N*/K)=2r/N*(N* = N*?/K) —r

ae —ahg \ Y™

_pd (e Ahg N\ k@) m

e q

ReplacingP*1=" by ((we — ahgq)/q)L=™/m N d=m/m
we eventually get

1 1-m
J— [fz(a—(e;,lq))ﬁ(e-%—hq)N*T —r —%(1—/11+mh7q)

%(—”(E;”qh%(e—hqw*#
Case 0 < m < 1. Eq.(C.3)can be rewritten as:

(N/K)I-m 1
(L= N/Ky™ — ympKI

Under this form, itis clear there is one and only one
equilibrium for eachk, and thatv*/K is a function
of K that decreases from 1 to O wh&nvaries from 0
to infinity. That comes from the properties of the func-
tion:

} (C.4)

q
—zm(e—hq)

91—m
1-0)

that increases from 0 to infinity.
Moreover, applying the Implicit Function Theorem
to Eq.(C.3)gives:
dN Ay /0K mN? 0
dKk = 9y /N K(mN+ (1—m)(K — N)) ~
Thus, N* as a function ofK increases. Moreover it
tends to a limit that is identical to the value given by
Eq.(C.3)when YK =0, i.e.,N* = (ypY/mym/d=m
For K — 0 we haveN* — 0. Now, whenN* — 0
in (C.4), we have:

h
7 H-ment)
0 —4m(e - hq)

which corresponds obviously to a stable equilibrium
(Trd < 0 and defl > 0). We then have T increasing,
and

_ 1/m
detd =L (e - hq)<<M>
e g

0 €10, [~
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x (L= 2m)N*L=m/mg 4 emr)

increasesm < 0.5) or decreasegn > 0.5) monoton-
ically whenK (thusN*) increases, the other parame-
ters being held constant. This is because they both are
linear functions ofN*="/™ The limit values when
K* — 400 are a positive one for dét(which is there-
fore positive for anyk), and%(rh —m(e — hq)) for
TrJ. They correspond to inequali¢$.1) found in Ap-
pendix B Thus, criterion(B.2) found for stability in
the Malthusian case is a sufficient condition that this
system does not destabilise with enrichment (increas-
ing K).

Note that, in particular, whefh K)1 =" < (r/a)™,
i.e., the prey isocline is decreasing as a functiowof
then the non-trivial equilibrium is always stable.

Case m = 1 (ratio-dependent). The non-trivial
equilibrium is given by:
e :K<1— a(e—hq))

re
N ale —hq)
q

therefore, it exists if and only ift(e — hg) < re. In
particular, when > «, it always exists.
The Jacobian is, according (A.1):

P =

r _ 2 2
Jo|ra-ane - s iy ]
i (oz(e;gq)) —%(e — hq)
Whence
r a(ez_thZ) _ _ ﬁ
J= a7 he ]
(e—hq)
| = —Le-hg)
Calculating T and det], gives:
2 _ 32,2
Tra=—r 4 20,y
e e
ale—h h 1
:_,,4_7( Q)<1+q<___>>
e e o
P G 0 i
_4.,_ &2 —r —hy
del=—"(c—ha) | « .

— (r _ g(e _ hq))q(e;hq)
e e

Since the criterion for the positive equilibrium to
existisre > a(e — hq), det] > 0, and the criterion for
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stability reads:

—h h 1
;e M(Hq(_ - _>>
e e a
In particular, one can see that- ha implies stabil-
ity, because this inequality follows then simply from
the existence condition for the equilibrium.
Casem > 1. Itis better to rewrite EqC.3)as:
y"B

= Km-1

Now, the functiond €10, 1] — 6™ (1 — 6)" in-
creases from 0 to a maximum i0, 1[, and then de-
creases to 0. Thus for small, there is no non-trivial
equilibrium, and beyond a critical value that depends
on the other parameter there are two equilibria. For
K — +o00, the larger equilibrium tends to infinity,
while the smaller one tends o )Y/ ~Y which
is simply the equilibrium in the case of Malthusian
growth.

Fig. 2e, f, and d show the evolution of the isoclines
when K varies K = 6,8 and 10, respectively). One
can see on these figures that, in the cases of l&rge
values, i.e., when two non-trivial equilibria exist, the
smaller equilibrium is unstable, and the higher one is
stable.

(N/KY" Y1 - N/K)™

(C.5)

C.2. BDA model

Let us first discuss the shape of the prey isocline.
The non-trivial isocline for the prey is given by:
p_ r(l—N/K)(A+ahN)

T al—rw)+ arwN/K

As for the casen = 1 in the last model, two cases
arise:

— rw < 1: we get a parabola like curve that reaches

its maximum between 0 and K and that becomes

negative forN > K.
— rw > 1: we get a decreasing curve that is positive
in (K=t K],

rw

The shape of the isoclines suggests that a necessary

and sufficient condition to have a non-trivial equilib-

rium is that the predator isocline (the same as in the

case of Malthusian growth) passes throughihaxis
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between 0 and, that is:
q

We have:
FN*(1— N*/K) =L p* (C.7)
e
and
1

P*=——(a(e —hq)N* —q)

waq

SubstitutingP* into Eq.(C.7), we get:
—h 1

ﬁN*2+<e 1 —ﬂ>N*——=o (C.8)
qgK wq q wa

which has two solutions, but only one is positive under
condition(C.6):

N*:£ er —
2er

+/<er_ )+

There are two possibilities:

e —hqg

w

derqg
Kwa

¢—hq (C.9)

)

— er < (e —hq)/w, thenN* has a limit whenk —
+o00; de I'Hopital’s rule yields:

_ q
e—hg\2
wa,/ (er — T)

— er > (e — hg)/w (which is always the case when
rw > 1); thenN* diverges and we have:

N*%(l )K
The Jacobian at equilibrium is, according to

Eq.(A.2):

J_[renk + 8 a-n/k)y Lwra-N/K) -1
a r(e—hg)(1—N/K) —qwr(1—N/K)

w

Neo

e—hq

erw

Thus, the stability conditions are:
h h N*

Trd :r|:q<— - w) - <1+q<— — w))—i| <0
e e K

* 2 *
1—N— Nrw+1_rw_h_q >0
K K e

detd =gr

(C.10)
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Thus, TrJ < 0 is a necessary and sufficient criterion
for stability, because substituting™ (Eq. (C.9)) into
the expression of ddtshows that the latter is always
positive. Moreover, taking into account thsit /K <

1, one can see that a sufficient condition for stability is
h <ew.

Appendix D. Commentsto the stability portraits
D.1. HVH model

The effect ofK has already been studied when the
relationship of the logistic case with the Malthusian
case was discussed.

To get the shape of the domains of stability in the

logistic case, only qualitative remarks can be done.

Eq. (C.4)shows that, for large, the non-trivial equi-
librium is stable. This is because for large the prey

densities are bounded, and thus the Jacobian is equiv-

alent to:

K

for certain constantg, 8, o, §. On the opposite, when
r is small, there is a region qualitatively similar to the
one of Malthusian case for small valuesof

Whenm > 1, Eq.(C.5) shows that, as for the case
of parametek, there is a boundary under which there
is no non-trivial equilibrium, and over which there are
two non-trivial equilibria, one unstable, and the other
stable.

D.2. BDA model

Two cases must be distinguished when studying the

effect of K on stability. First, wherr < (e — hq)/w,
then N*/K decreases from 1 to O whet increases
fromg/(a(e — hq)) to +o0. Thus, TrJ varies monoto-
nously from—r to rq(h/e — w). Now we have two
cases:

— if h < we then we always have stability (we al-
ready knew that);

— if h > we, then there is an upper limit ok for
stability.

In the second case, when > (e — hq)/w, TrJd
varies monotonously from-r to r[q(% - w)ﬂ

erw

R. Arditi et al. / C. R. Biologies 327 (2004) 1037-1057

— erw—ethd | According to the parameter values, there

erw

is either always stability (and < we is a sufficient
condition) or an upper limit oK for stability.

The effects ofr are somewhat simpler to under-
stand. For large, condition(C.10)is always fulfilled
(becaus&C.9) implies N* — K whenr tends to in-
finity).

Whenr tends to zero, de I'Hopital’s rule applied
to (C.9) shows thatN has the limitg/(a(e — hq)),
which is independent ab. Thus, whenX is close to
q/(a(e —hq)), condition(C.10)is always fulfilled and
whenKk is large, it is only fulfilled whenw > h/e.
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