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Abstract

Based on a qualitative analysis of ODE systems, the dynamic properties of alternative predator–prey models with predator
dependent functional response have been compared in order to study the role that predator interference plays inthe stabilisation
of trophic systems. The models considered for interference have different mathematical expressions and different c
foundations. Despite these differences, they give essentially the same qualitative results: when interference is low, increasing i
has a positive effect on asymptotic stability and thus on the resilience of the biological system. When it is high, it is the
(with logistic prey growth, increasing the interference parameter ensures stability but leads to very small predator d
Possible consequences on the evolution of the interference level in real ecosystems are discussed.To cite this article: R. Arditi
et al., C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

L’interférence mutuelle stabilise-t-elle toujours la dynamique proie–prédateur ? Une comparaison de modèles. À l’aide
d’une analyse qualitative de systèmes d’EDO, ont été comparées les propriétés dynamiques de modèles proie-prédateur dif
rents, incluant une réponse fonctionnelle prédateur-dépendante, dans le but d’étudier le rôle que joue l’interférence
dans la stabilisation des systèmes trophiques. Les modèles d’interférence considérésont des expressions mathématiques et
fondements conceptuels différents. Malgré ces divergences,ils donnent pour l’essentiel les mêmes résultats qualitatifs : lorsqu
le degré d’interférence est bas, son augmentation exerce un effet favorable sur la stabilité asymptotique et donc sur la résilience
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paramètre
sé-
du système biologique. Lorsqu’il est élevé, c’est le contraire (avec une croissance logistique des proies, augmenter le
d’interférence maintient la stabilité, mais conduit àde très faibles densités des prédateurs). Sont ensuite discutées les con
quences possibles sur l’évolution du degré d’interférence dans les écosystèmes réels.Pour citer cet article : R. Arditi et al.,
C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Keywords: trophic interactions; population dynamics; functional response; predator-dependence; ratio-dependence; enrichment

Mots-clés : interactions trophiques ; dynamique des populations ; réponse fonctionnelle ; prédateur-dépendance ; ratio-dépendance ;
enrichissement
ry
u-
te

f en-
in-
his

per
as

e
he
par

ect
een
her
d to

in
se,
sity
this
syn-

ch-
eir

ura-
eda-
s

ore
ach

ful
ith

r
-
al
the

ted
An-
ith
ics.
d
ula-
ms

t of
pu-

el
ley
h

as

ous
his

lly
ue.
ro-
-

s
m
em-
sider
1. Introduction

In the founding models of predator–prey theo
in the 1920s (the Lotka–Volterra model in contin
ous time or its Nicholson–Bailey equivalent in discre
time), it was assumed that the instantaneous rate o
counter of prey by a single predator individual was
dependent of the predator density. More formally, t
rate, known as the ‘searching efficiency’a is defined
as the proportion of prey encountered per predator
unit of searching time. Although this assumption w
occasionally questioned (e.g., by Volterra himself[1]),
it was only much later that Hassell and Varley[2]
provided empirical evidence for an adverse influenc
of predator density on the searching efficiency. T
evidence rested on data on insect predators and
asitoids.

Hassell and Varley suggested first that this eff
was due to direct behavioural interference betw
searching individuals but it was later shown that ot
mechanisms (e.g., predator aggregation) could lea
a similar effect (e.g.,[3]). For this reason, we use
this paper the word ‘interference’ in a generic sen
designating any mechanism by which predator den
depresses individual predatory performance. In
context, ‘density-dependence’ can be used as a
onym to ‘interference’.

In their paper, Hassell and Varley[2] quantified
the intensity of interference by a parameterm, the
negative slope of the log–log regression of sear
ing efficiency against predator density. However, th
estimates of searching efficiency ignored the sat
tion effect that superabundant prey can have on pr
tors[4]. Arditi and Akçakaya[5] proved that this lead
to underestimation of the interference constantm and
that, using new estimates, interference was even m
frequent and more intense. The descriptive appro
-

initiated by Hassell and Varley has been very use
for empiricists, allowing us to assess interference w
the single parameterm.

Using a mechanistic approach to describe predato
behaviour, Beddington[6] developed an explicit math
ematical model to describe the effect of individu
interference on the consumption rate. Extending
assumptions of Holling’s ‘disc model’[4], the decline
of the predator efficiency is due to the time was
by predator encounters. Quite independently, De
gelis et al.[7] developed almost the same model w
a perspective in predator–prey population dynam
It is worth mentioning that DeAngelis et al. followe
a phenomenological approach on the scale of pop
tions, contrary to Beddington, who reasoned in ter
of individual behaviour.

A number of studies have investigated the effec
mutual interference on population dynamics and po
lation stability. Hassell and Rogers[8] and Hassell and
May [9] studied the effect of the Hassell–Varley mod
on a discrete-time model of the Nicholson–Bai
type. Free et al.[3] performed a similar analysis wit
the Beddington model. Rogers and Hassell[10] pro-
posed another interaction model of the same kind
the Beddington model. DeAngelis et al.[7] studied the
dynamic properties of a continuous-time autonom
model incorporating their interference model. T
model was taken up recently by Hwang[11,12]to es-
tablish that locally stable equilibria are also globa
stable, and that periodic orbits, if existing, are uniq
Further mathematical results on this model are p
vided by Fan and Kuang[13] who studied the non
autonomous case and by Cantrell and Cosner[14,15]
who studied the persistence or extinction of specie
in spatially explicit reaction–diffusion models. Fro
these and other theoretical studies, and from some
pirical evidence, a consensus has emerged to con
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that interference has a stabilizing influence on po
lation dynamics (e.g.,[16, p. 383]), although Hassel
and May[9] pointed out that there was an upper lim
on the interference constant beyond which the dyn
ics became unstable.

In the present paper, we intend to perform a unifi
and comparative analysis of the effect of the major
terference models on population dynamics. In parti
lar, we will fully analyse the dynamics of a model th
incorporates the Hassell–Varley interference mode
gether with Holling’s saturation in a continuous tim
setting.

We shall focus on the study of model equilibr
and their asymptotic stability. This is motivated by t
usual assumption that mathematical stability of a t
ial equilibrium indicates population extinction, while
a nontrivial equilibrium isindicative of the average
of real population abundances. Weak, aperiodic fl
tuations or fluctuations correlated with environmen
changes suggest the existence of a stable nontr
equilibrium. Thus, the existence of a stable nontriv
equilibrium is required, in practice, for the persisten
of the populations. However, even a stable equi
rium may sometimes lead to strong short-term fluct
tions[17]. Periodic fluctuations with no environment
correlates are suggestive of limit cycles around an
stable equilibrium. But limit cycles may in practic
lead to extinction due to demographic and envir
mental stochasticity, even though some of the m
popular records of predator–prey interactions conc
periodic oscillations of vertebrate populations that a
not due to seasonal changes. A large limit cycle t
periodically brings either population close to zero i
plies a high probability of its extinction, because
stochastic processes or simply because of externa
pacts that are not taken into account by the model.

We shall examine the effect of two main param
ters: first, the intensity of predator interference, a
is generally suggested that it should be a stabiliz
factor [6,7,18] second, the prey productivity, as it
generally suggested that it should be a destabiliz
factor[19].

2. The models and their analysis

We consider deterministic aggregated predat
prey models written in the following ‘canonical’ form
(1)
dN/dt = F(N) − g(N,P )P

dP/dt = eg(N,P )P − qP

whereN and P are the densities (or biomasses)
prey and of predators, respectively. The production
prey in the absence of predators is described by
functionF(N), whereasg(N,P ) is the functional re-
sponse (number of preys eaten per predator per
time). Natural mortality of prey is considered to
negligible compared to mortality due to predation. T
constante is the trophic efficiency and predators a
assumed to die with a constant death rateq . The func-
tion F will be taken either as the Malthusian grow
F(N) = rN or as the logistic modelF(N) = rN(1−
N/K).

Many questions in predator–prey theory, inclu
ing the question of interference between predat
revolve around the expression that is used for the fu
tional responseg(N,P ). The well-known models o
Lotka–Volterra

(LV) g(N,P ) = aN

and Holling[4]

(H) g(N,P ) = aN

1+ ahN

do not include interference since they do not ac
ally depend on predator density. They are of the fo
g = g(N) (termed ‘prey-dependent’ by Arditi an
Ginzburg[20]).

Using empirical estimates of the searching effi
ciency a, Hassell and Varley[2] observed that this
quantity declined with predator density almost l
early on log–log scales. Therefore, they suggested
model:

(2)(HV) a = αP−m

This expression is dimensionally unbalanced[21] and
it should rather be written so thatm be the expo-
nent of a dimensionless quantity like, for examp
α(P/P0)

−m, whereP0 is the density of a ‘population
consisting of a single predator in the whole habi
There is no loss of generality to choose the units
measuring habitat surface so thatP0 = 1 and the orig-
inal expression can be used safely.

Hassell and Varley ignored saturation of the fun
tional response and used a Lotka–Volterra-type
sponse that was modified by replacing the attack
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a by Eq.(2):

(HVLV ) g(N,P ) = αNP−m

If, however, saturation occurs (e.g., in the form
a handling timeh), the Hassell–Varley model mu
be introduced into Holling’s type II model. This
the model that was actually considered in the work
Arditi and Akçakaya[5]:

(3)(HVH) g(N,P ) = αNP−m

1+ αhNP−m

This work showed that this correction leads, in ge
eral, to higher estimates of the interference constanm.
In most cases considered in[5], the value ofm was
found to be between 0.5 and 1 and, quite often,
significantly different from 1. For the special ca
whenm = 1, the functional response becomes ra
dependent[20]:

(4)(RD) g(N,P ) = αN/P

1+ αhN/P

In this case, interference hasa perfectly compensator
effect, while it becomes overcompensating ifm > 1. If
m < 0, the model has generally been interpreted as
scribing cooperation instead of interference. This c
will not be examined here.

In contrast with Hassell and Varley’s empiric
model, Beddington[6] proposed a simple mechanis
for interference. Extending Holling’s assumption th
predators spent some timeh on encounters with prey
he assumed that they also wasted a timew on encoun-
ters with other predators. This yields the expressio

(5)g(N,P ) = aN

1+ ahN + aw(P − P0)

whereP0 is, as above, the ‘population density’ of
single predator. This expression accounts for the
that a given predator cannot encounter itself. N
that for w = (aP0)

−1, this function becomes ratio
dependent.

Independently, DeAngelis et al.[7] proposed the
same model with purely phenomenological arg
ments, and omitting the constantP0. Under reasonabl
conditions, this omissionshould be acceptable and w
will consider here only the simpler form:

(6)(BDA) g(N,P ) = aN

1+ ahN + awP
DeAngelis et al.[7] performed a stability analy
sis of the continuous-time dynamic model(1) with the
functional response(6) and logistic growth. In this pa
per, our primary aim will be to undertake a simil
analysis with the functional responses based on
Hassell–Varley model. It will be interesting to com
pare the dynamic properties generated by the two
proaches, as there are no clear direct empirical a
ments favouring one or the other.

Note that the BDA model tends to the rati
dependent model if the interference parameterw is
large, provided that predator density is not negligib
the constant 1 in the denominator of Eq.(6) can then
be neglected. Thus, the ratio-dependent model ca
considered as the limit of either the HVH model
the BDA model when the interference effect becom
very strong. Note that the valuem = 1 in the HVH
model corresponds to a large interference, while
BDA equivalent is a very large value ofw. Since the
HVLV and RD models are special cases of the HV
model, the analysis will focus on the HVH and BD
models. The results for those two special cases
also be discussed.

In the special cases of zero interference para
ters (i.e., whenw = 0 or m = 0), both BDA and
HVH models become the prey-dependent Holl
model (H), or even the LV model ifh = 0.

2.1. The isoclines

Continuous-time models, as those studied h
have the advantage over discrete-time models that
can be studied with the isocline method, thus prov
ing a clear graphic perception of the dynamic pro
erties. The zero isoclines define domains in the ph
space(N,P ) in which the population rate of chang
does not change sign. They give a straightforw
way of finding the equilibrium (intersection of the is
clines). They also give indications on the stability
the equilibria and on the global behaviour of the d
namics.

In this section, we will establish some general pr
erties about the shape of the predator isocline an
consequences on the dynamics. Additionally, a su
cient condition for stability will be stated. The pre
isocline depends on the production functionF(N) and
will be studied later. The expression of the preda
isocline holds for all types of prey growth. In partic
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the prey.

To find the predator isocline for the HVH mode
we just have to set:

dP/dt = e
αNP−m

1+ αhNP−m
P − qP = 0

hence, besides the trivial isoclineP = 0, there is a
non-zero one:

Pm = α(e − hq)

q
N

This function is positive if and only ife − hq is pos-
itive. If this were negative, the predator would a
ways decrease and could never persist. Biologica
it means that the handling time and the death rate (
the losses of time and energy) must not be too la
compared with the ecological efficiency. The quan
e − hq can be considered the ‘net efficiency’ of t
metabolism of the predator. In the rest of the paper,
shall always assume that it is positive,

(7)e − hq > 0

Fig. 1a–e shows the shape of the predator isoc
(IsoP) in the phase plane(N,P ):
e the
Fig. 1. Phase plane portraits with Malthusian prey growth. IsoN and IsoP are prey and predator isoclines respectively, the arrows indicat
vector field determined by the model on the(N,P ) phase plane: (a) the prey-dependent case(m = 0), (b) the low-interference casem < 1,
(c) the ratio-dependent case with explosion, (d) the ratio-dependent case with extinction, (e) the high-interference case(m > 1) and (f) the BDA
model.
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• if m = 0, the predator dependence disappe
from the expression for the functional respon
and the isocline is a vertical line, as in all pre
dependent models (Fig. 1a);

• if 0 < m < 1, the isocline is a convex curve with
horizontal slope at its origin (Fig. 1b);

• if m = 1 (ratio-dependent model), the isoclin
is a straight line that passes through the ori
(Fig. 1c–d);

• if m > 1, the isocline is a concave curve with ve
tical slope at the origin (Fig. 1e).

For the BDA model, the predator isocline is alwa
a straight line (Fig. 1f), since:

dP/dt = e
aN

1+ ahN + awP
P − qP = 0

implies:

P = e − hq

wq
N − 1

aw

As in the HVH model, condition(7) is also nec-
essary in the BDA model for the existence of a no
trivial equilibrium.

In the HVH model (except form = 0), at any
prey density, there are always predator densities
enough that the predator can grow. In the BDA mo
there is a thresholdNC = q/(a(e−hq)), below which
the predator cannot grow. This expression is indep
dent of the interference constantw. This contrasts with
the HVH model, in which predator growth at low pre
density becomes easier when the interference p
meter increases. Note that increasing the interfere
constant has a negative effect on the domain in wh
the predator increases, by decreasing the slope o
predator isocline.

3. Remarks on stability

The local stability of an equilibrium can be studi
by analysing the JacobianJ of the system, i.e., the ma
trix of partial derivatives of(1), calculated at equilib
rium. In practice, a stable non-trivial equilibrium (wi
sufficiently large basin of attraction) implies the pe
sistence of both populations. The necessary and
ficient conditions for local stability (Routh–Hurwit
criteria) in two dimensions are:

Tr J < 0; detJ > 0

A general expression for the matrixJ, valid for any
prey growth function, can be derived (Appendix A).
An interesting and classical result that can be dedu
from this expression is that, except whenm > 1 in the
HVH model, a sufficient condition for stability is tha
the isoclines intersect in a portion of the prey isocl
where it has a declining slope. It must be pointed
that this condition is not necessary in general. Only
a prey-dependent model is this condition both nec
sary and sufficient. Thus, when the functional respo
depends onP , the equilibrium may be stable even
the prey isocline has a positive slope.

Biologically, the fact that the prey isocline is d
creasing means that with more prey, a smaller pred
density is sufficient to control the prey. This is d
to density dependence in the prey, and generates
negative feedback that ensures stability. The lack
density dependence in Malthusian growth is the r
son why the prey isocline is always increasing, exc
for m > 1 (seeFig. 1a–d).

The stability of the trivial equilibria(0,0) and
(K,0) is also important. It characterises the ability
inability of the species to colonise the system. G
erally, the isocline patterns allow us to study stabi
graphically. In our case, the predator isocline sho
that in both the BDA and the HVH models (for 0�
m < 1), the predator can never become establis
when the prey density is too small. In the BDA mod
this is the threshold effect, and in the HVH model w
0 < m < 1, the slope at the origin is horizontal, so t
region where the predator increases becomes infinite
small when the prey density tends toward zero.

These general properties will facilitate the study
the different cases below, and will help to determ
the specificity of each.

3.1. Malthusian growth

In this section, we examine the case in which
prey growth rate is density-independent (i.e., c
stant). This Malthusian growth is important to stud
because it permitsto identify the cases in which sta
bility is solely due to control by the predator. This
particularly important in a biological control perspe
tive, since the prey (the pest) must be maintaine
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very low densities, at which the density depende
modelled by the logistic model does not operate.

3.1.1. HVH model
The prey equation in the HVH model reads:

dN/dt = rN − αNP−m

1+ αhNP−m
P

Fig. 1a–e shows the shape of the isoclines for v
ous values ofm. The details of the analysis are giv
in Appendix B.

If e−hq > 0, there exists a unique non-trivial equ
librium, except whenm = 1. It is given by:

N∗ = q

er

(
er

α(e − hq)

)1/(1−m)

P ∗ =
(

er

α(e − hq)

)1/(1−m)

Whenm = 1 (the ratio dependent case), the only eq
librium is (0,0) (Fig. 1c and d), and according to th
values of the parameters and of the initial conditio
there is either explosion of both densities (the pre
tor does not control the prey and ‘follows’ the prey
explosion) or convergence to(0,0) [22,23](the preda-
tor consumes all the prey and then dies of starvat
which is the classical laboratory dynamics[24,25]).

A necessary and sufficient condition for stabil
(seeAppendix Bfor details) is:

(8)0 <
rh

e − hq
< m < 1

It is a classical result that the Holling functional r
sponse (i.e.,m = 0) with a Malthusian growth for the
prey leads to an unstable equilibrium. This is beca
the prey isocline is an increasing curve and the pre
tor isocline is vertical (Fig. 1a). If m > 0, interference
can stabilise the equilibrium, provided thatr is not too
large (Figs. 1b and 3b). Moreover, there is always a
upper limit for h, under which we have stability: re
ducing the handling time contributes to stability
facilitating prey growth control. In particular, whe
h = 0, which corresponds to the HVLV model, th
equilibrium always exists and is always stable.

It should also be emphasised that form > 1
(Fig. 3b), the equilibrium is never stable. Accordin
to the initial conditions, there is either extinction o
explosion, while when 0< m < 1, interference ha
a stabilising influence, the interference parameter
comes destabilising whenm > 1. This result had al
ready been found by Hassell and May[9] for discrete
time models.

It is also noteworthy that the effect ofm on the val-
ues of equilibrium densities depends on the para
ters. In particular, ifer > α(e − hq), the equilibrium
densities rise withm, when 0< m < 1, and decreas
whenm � 1. If er < α(e − hq), it is the opposite.

3.1.2. BDA model
For the BDA model, the prey equation is:

dN/dt = rN − aN

1+ ahN + awP
P

The isoclines are two lines (Fig. 1f) that intersect a
positive densities if and only if

(9)w <
e − hq

er

(note that this is equivalent to the slope of the preda
isocline being superior to the slope of the prey i
cline). If this equation is not fulfilled, then there
no non-trivial equilibrium and both densities explod
Thus, contrary to the HVH model, there is an u
per limit for the interference parameter beyond wh
there is no non-trivial equilibrium. In common with
the HVH model, a too intense interference betwe
predators leads to explosion (unstable equilibrium,
predators are not able to control the prey), as do
too-high prey growth rate.

If the equilibrium exists, it is given by

N∗ = q

a(e − hq − erw)

P ∗ = er

a(e − hq − erw)

Raising the parameterw increases these values. U
like the HVH model, this tendency does not depe
on the other parameters. The stability criterion is:

(10)
h

e
< w <

e − hq

er

Thus, interferencew and efficiencye are stabilising
factors, whereas the handling timeh has a destabil
ising influence. Note that the upper limit on the i
terference parameter beyond which the equilibrium
unstable coincides with the upper limit for existen
of the equilibrium.
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In sum, the same qualitative conclusion about
effects of the parameters on stability emerges fr
both models: the interference parameter is stabilis
up to a certain limit, beyond which there is instab
ity or even disappearance of the positive equilibriu
Parametersr, h and q are destabilising, whilee is
stabilising. Moreover,a (or α) has no effect on sta
bility in either model. A difference on the effect o
the interference parameter is that, in the BDA mod
increasing the interference parameter rises the e
librium densities when it isunder the threshold valu
w = (e − hq)/er, while in the HVH model, the effec
depends on the parameter values.

3.2. Logistic growth

In the case of logistic growth, the system can
explode because the prey cannot grow beyond its
rying capacityK. If an equilibrium is stable in the
logistic case and not in the Malthusian case, its
bility is basically due to the limitation of the prey b
its nutrients, and neither by the control of the prey
the predator, nor by feedback on the predator du
interference.

3.2.1. HVH model
The prey growth equation is now:

dN

dt
= rN(1− N/K) − αNP−m

1+ αhNP−m
P

Fig. 2a–f shows the different shapes of the is
clines. The details of the analysis are given inAppen-
dix C.

The casem = 0 is the classical model by Rose
zweig and MacArthur[26] (for its analysis see, e.g
[27]). In summary, there is a non-trivial (positiv
equilibrium if:

(11)
q

a(e − hq)
< K

Otherwise, the predator cannot persist and(K,0) is a
global attractor. This equilibrium is stable if and on
if:

(12)
q

a(e − hq)
< K <

(e + hq)

ah(e − hq)

which is equivalent to say that the equilibrium is on t
decreasing branch of the prey isocline (seeFig. 2a). If
the equilibrium is stable, it is a global attractor. Oth
wise, the global attractor of the system is a stable li
cycle that emerges from the equilibrium as a resul
a Poincaré–Andronov–Hopf bifurcation at the critic
valueK = (e + hq)/ah(e − hq).

For 0< m < 1, there is one non-trivial equilibrium
(seeFig. 2b–c). WhenK goes to infinity, it tends to
a limit identical to the Malthusian growth one. If co
dition (8) is fulfilled, then the equilibrium is stable.
not, there is a limit valueK0 such that forK < K0 it is
stable and forK > K0 it is not. Again, if the equilib-
rium is stable, it is a global attractor. Otherwise, th
is a stable limit cycle that becomes a global attrac
Note that forh = 0, which corresponds to the origin
Hassell–Varley model, we always have stability (s
Appendix Cfor details).

For m = 1, besides equilibria(0,0) and (K,0),
there is a non-trivial equilibrium if

α(e − hq) < re

The equilibrium densities are proportional toK and
are given by:

N∗ = K

(
1− α(e − hq)

re

)

P ∗ = N∗ α(e − hq)

q

The non-trivial equilibrium is stable if and only if:

r >
α(e − hq)

e

(
1+ q

(
h

e
− 1

α

))
This condition is independent ofK. Moreover,r > α

is a sufficient condition of stability (in the Malthusia
case,r > α always implies explosion). In the ratio
dependent case, the prey is controlled by its carry
capacity only. It is somewhat puzzling that in this ca
r is a stabilising factor, which seems contradicto
with the case 0< m < 1 with a Malthusian growth
This is to be discussed in the next section.

If the equilibrium is stable, stability is not alway
global [22,23]. According to initial conditions, ther
is either convergence to(0,0) (when the initial prey
density is too small compared to the initial preda
density), or to the non-trivial equilibrium (see Fig. 5
in [22]). Note that if there is a stable limit cycle i
the ratio-dependent model, it is not always a globa
tractor either[22,23]. Thus, depending on the mod
parameters and on the initial values, the instability
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Fig. 2. Phase plane portraits with logistic prey growth: (a) is the prey-dependent case, (b) and (c) are low-interference cases(m < 1) without or
with a hump in the prey isocline, (d)–(f) are high-interference cases with either two or no non-trivial equilibria, (g) and (h) the BDA model, in
the latter case the ‘limited-predation’ case.
x-

-

y

hu-

ys

d

rge
the non-trivial equilibriumleads either to species e
tinction or to sustained oscillations.

For m > 1, there is a critical valueK1(m) such
that for K < K1(m) there is no non-trivial equilib
rium (seeFig. 2e) and forK > K1(m) there are two
non-trivial equilibria (Fig. 2d and f). The greater pre
density at equilibrium asymptotically tends toK when
K → +∞, and the smaller decreases to the Malt
sian value (seeAppendix C for details). The lower
equilibrium is always unstable and the higher alwa
stable.

WhenK < K1(m), (0,0) is a global attractor an
the whole system becomes extinct. WhenK > K1(m),
according to initial conditions, the dynamics conve
either to the higher equilibrium, or to(0,0) (in partic-
ular when prey density is too low, seeFig. 2d and f).
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Finally, some words should be said about de
ministic extinction in the HVH model. The phas
portraits show that both populations can go exti
for certain initial conditions whenm � 1, but never
for m < 1. The phenomenon of deterministic extin
tion was first studied in the context of the rati
dependent model[22,28,29]but criticised for not be-
ing ‘generic’ (i.e., using the intermediate original BD
model(5), deterministic extinction only occurs for th
limiting casew = (aP0)

−1). Our analysis of the HVH
model (which is another intermediate model) sho
that this phenomenon is ‘half-generic’ in the sense
it happens for allm � 1. However, the important ob
servation is that for values ofm < 1 but close to 1, the
dynamics can come very close to the axes, and ex
tion may occur due to demographic or environmen
stochasticity.

3.2.2. BDA model
Now the prey growth equation is:

dN

dt
= rN(1− N/K) − aN

1+ ahN + awP
P

The isoclines of this model are drawn inFig. 2g and h.
Again, the details of the analysis can be found inAp-
pendix C. A necessary and sufficient condition to ha
a non-trivial equilibrium is:

q

a(e − hq)
< K

This condition is identical to(11) in the HVH model
for m = 0. If it is not fulfilled, the dynamics converg
to (K,0).

The non-trivial equilibrium is given by:

N∗ = K

2er

(
er − e − hq

w

+
√(

er − e − hq

w

)2

+ 4erq

Kwa

)

P ∗ = 1

waq

(
a(e − hq)N∗ − q

)
If w < (e − hq)/(er) (which is also condition(9) of
the equilibrium positivity in the Malthusian case), th
N∗ tends to a limit whenK → +∞:

N∗∞ = q

a(wer − e + hq)
If w > (e − hq)/er then, for highK values:

(13)N∗ ≈
(

1− e − hq

erw

)
K

Thus, when the condition for existence of an equi
rium in the Malthusian case is fulfilled, it correspon
to the limiting case whenK → +∞. The boundary
valuew = (e − hq)/(er) is the equivalent ofm = 1
in the HVH model: beyond it, the prey is no long
predator-controlled but resource-controlled.

Note that whenw → +∞, P ∗ → 0 (becauseN is
bounded with respect tow): as in the HVH model
when interference is too large, the predator densit
equilibrium is so low that extinction is almost certai

The non-trivial equilibrium is stable if and only if

q

(
h

e
− w

)
−

(
1+ q

(
h

e
− w

))
N∗/K < 0

In particular, ifw > h/e, it is always stable, becaus
1 − N∗/K > 0. If the equilibrium is stable, it is a
global attractor. Otherwise, there is a stable limit cyc

The same type of conclusions about both equilib
rium and stability arise in both models. Increas
interference is at first stabilising, then it prevents
predator from controlling the prey and, eventua
produces the extinction of the predator, even if, ma
ematically, we have a stable equilibrium. There i
difference concerning the existence of a non-triv
equilibrium. In the HVH model, whenm < 1, we al-
ways have an equilibrium, no matter what the val
of the parameters are (provided thate − hq > 0). In
the BDA model, on the contrary, there is a critic
value ofK under which the predator cannot persist
cause of insufficient prey supply. However, in practi
whenm is small, the predator density at equilibriu
quickly tends to zero whenK decreases, and we ma
consider that we should have extinction because th
conditions of validity of the continuous determini
tic models are not fulfilled anymore. Therefore, th
difference between the models is not qualitatively s
nificant. Another feature of the BDA model is that
yields conditions of existence of the non-trivial eq
librium quite similar to the HVH model whenm = 0.

4. Effects of K , r , m, w on stability

Let us consider a predator with fixed values oa
(α in the HVH model),h, q ande. These can be con
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sidered as intrinsic parameters that are assumed n
depend on environmental factors. We will focus n
on the effects of the crucial parametersK, r, m, w

on stability. ParametersK andr relate to the growth
of the prey, and can be controlled experimentally (
instance by modifying the input of nutrients) or infl
enced by the environment (for instance by tempe
ture). Parametersm andw have the same phenomen
logical function, they represent the degree of inter
ence in the two models HVH and BDA, respective
They can be considered to be intrinsic to the preda
and their effect must be studied because interfere
is the topic of this paper.

The Paradox of Enrichment[19] is based on the
mathematical finding that increasingK has a negative
effect on stability in many models, which contradic
natural observations. On the other hand, interfere
between predators is thought to be a stabilising fac
because it reduces predator reproduction as pred
become more numerous and thus acts as a neg
feedback. The effect of the maximal prey growth r
r on stability is often thought to be destabilising, b
s

cause under highr value, the prey is able to esca
the control of predation. However, in the simple log
tic equation, increasingr makes only the convergenc
to the carrying capacityK faster. Thus, increasingr
should have a stabilising influence in the neighbo
hood of the carrying capacityK.

Fig. 3 shows the shape of the domains of stabi
in the plane(r,m) for the HVH model (Fig. 3b and d),
and in the plane(r,w) for the BDA model (Fig. 3a
and c).

In the HVH model, condition(8)provides a straigh
forward way of getting the domains of stability in th
Malthusian case (Fig. 3b). In the logistic case, the lim
its of the domains are intractable analytically.Fig. 3d
shows how these domains, obtained numerically, l
like (see alsoAppendix D). There is a stable domai
for smallr, and another one for larger. The interpreta-
tion is that a large maximum growth rate ensures a
return to equilibrium as in the simple logistic equati
(for large r, the equilibrium is close toK: the prey
is controlled by its carrying capacity and not by t
predator). For smallr, the dominating phenomenon
l

Fig. 3. Existence and stability of a positive nontrivial equilibrium in relation to growth rater and interference parameterw (BDA model, (a)
and (c)) or m (HVH model, (b) and (d)). Figures (a) and (b) are for Malthusian prey growth, (c) and (d) for logistic prey growth. The mode
parameters areK = 70; a = α = 0.5; h = 0.1; e = 0.2; q = 0.9.
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Fig. 4. Existence and stability of a positive nontrivial equilibrium in relation to carrying capacityK and interference parameterw (BDA model
with parameter valuesa = 2.0; h = 0.5; e = 0.3; q = 0.3; r = 1.0, (a)) andm (HVH model with parameter valuesα = 0.5; h = 0.1; e = 0.2;
q = 0.9; r = 1.0, (b)). The dashed line in (b) is the asymptotic limit of the curved line separating the stable and unstable regions.
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the stabilising effect of the interference that contr
the predator. The prey is controlled by the preda
and a too large value ofr prevents this control. Whe
m > 1, there is a threshold value ofr below which
there is no equilibrium, and above which there are t
equilibria, one unstable, and one stable.

In the BDA model, there is no stability domain fo
smallr values. Increasing parameterr has a stabilising
influence. The domains are drawn inFig. 3c (see also
Appendix D).

An important remark must be made about the p
itive effect of r on stability. Classically, we use th
logistic form for the prey growth rate assuming th
the time delayT of the feedback of density on repr
duction is negligible. However, this is only true wh
the productrT is small. Ifr is large, this amplifies the
effect of the time delay, and instability aroundK might
appear[30] even for very small values ofT . This sta-
bilising effect ofr can thus be seen as a mathemat
artefact.

The effect ofK on stability is essentially the sam
in both models. Either the equilibrium is stable f
all K, or there is a limit onK beyond which it be-
comes unstable (seeFig. 4a and b). The results for th
Malthusian case may be deduced just by settingK =
+∞. There is no discontinuity at infinity forK. Fig. 4
shows the shape of the stability portraits in the pla
(K,m) for the HVH model, and in the plane(K,w)

for the BDA model.
In the HVH model, whenm < 1, there is always
stability for smallK, and depending on the values
the parameters, either there is an upper limit onK for
all m or there is a regionmC < m < 1 in which there is
always stability (withmC = rh/(e −hq), seeFig. 4b).
Whenm > 1, there is a threshold onK below which
there is no equilibrium, and above which there are
equilibria, one unstable, and one stable.

In the BDA model, we have a lower limit onK
for existence of a non-trivial positive equilibrium. F
w > h/e, we always have stability. For smallerw,
there is an upper limit onK for stability (similar to
condition(12) whenw = 0). One can define a curv
w(K) of the lower limit for stability for a givenK.
It is an increasing curve with a limit whenK → +∞
which is less thanh/e (Fig. 4a).

In conclusion, both models lead to qualitative
identical results. The most important difference b
tween the models is the effect of the interference p
meter on stability. In the BDA model, there is alwa
a value of the interference parameter above whic
the Paradox of Enrichment disappears. In the H
model on the contrary, the existence of the disco
nuity at m = 1 implies that a too strong interferen
leads to instability of the dynamics, at least for sm
K, whereas, for valuesm < 1, interference is stabil
ising, as in the BDA model. However, condition(13)
implies that, with a too great interference parametew,
the densities at equilibrium are proportional to the c
rying capacityK. Even if this has no effect on stabilit
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it shows that even in the BDA model, a large interf
ence makes the predator unable to control the prey

5. Discussion

The two general models for interference stud
here have very different mathematical expressions
very different conceptual foundations. Despite th
differences, it is quite satisfactory that they give
sentially the same qualitative results concerning
effects of the parameters on the stability of the syst
The interference parameter has a peculiar charact
tic: when it is low, increasing it has a positive effe
on the stability and thus on the persistence of the
tem. When it is large, it is the contrary (with logist
growth, increasing the interference parameter ens
stability, but leads to very small predator densities)

Another important point is that the Paradox of E
richment[19] still holds in both types of model fo
small values of the interaction coefficients. The o
servation that diversity decreases in highly produc
sites in both experimental manipulations[31] and in
situ recordings (e.g.,[32,33]) has led to many theorie
aiming at explaining it[34]. Rosenzweig[34] argues
that the effect of the Paradox of Enrichment for pre
tion (and of its equivalent for competition[35]) acts on
a short time scale before natural selection occurs,
could provide an alternative to the more popular int
pretation, based on Tilman’s competition theory[31].

Is it relevant to take interference into account
the models? Which values of interference are to
expected in nature? Since the very beginning of
terference theory, it was pointed out that the val
found in the laboratory could not be extrapolated
field populations[36,37]because densities used in t
laboratory were far higher than in the field. Howev
some field studies reported values of the parametem

higher than 0.5 and even higher than 1 (examples
given in[18,38,39]). Free et al.[3] suggested that thi
was not due to direct interference, but was rathe
consequence of the tendency of the predators to ag
gate in patches with high prey density. As mention
in theIntroduction, we disregard in this paper the pr
cise mechanisms leading to interference, but we
conclude that there are field situations where we n
a high interference parameter to explain the dynam

The question of which of the models studied h
should be used in practice must be addressed
-

-

mentioned in the introduction, the HVH model w
proposed after empirical evidence of such a fo
of the functional response. It is widely used in t
study of interfering populations, from insects to v
tebrates[40]. In a direct comparison, it won over th
BDA model describing soil fauna[38]. However, up to
now, this form was rarely incorporated into dynam
models at the level of populations. No easy empir
test can be made for discriminating between the
classes of models studied here, but varying the n
ent input, for instance, gives a way of identifying t
predator isocline and hence, indirectly, the functio
response and the interference parameter. Indeed
values of the densities at equilibrium, plotted in t
phase space, must all be on the predator isocline.
method can be applied when it is difficult to meas
predator consumption directly. An advantage of
HVH model is that the predator isocline is sufficie
to determine the interference parameter, while in
BDA model, one needs to identify other parameter
measure the interference parameter.

Other considerations than experimental ones
also help determine which model is the most pro
to use. An argument that is raised against the Hass
Varley and ratio-dependent models is that they do
rest on mechanistic arguments. However, it is inter
ing to note that in the modelling of bioreactors (th
describe processes that are close to predator–pre
teraction: the prey is the substrate, the predator the
croorganism), no mechanical approach has ever b
used to find a form for the functional response[41,
42]. On the contrary, the approach has always been
tirely empirical, even though the processes should
much simpler than in a predator–prey system. In f
the HVH model is satisfactory for several theoreti
reasons. An advantage of using a functional respo
of the formg(NP−m) is that, with a small number o
assumptions about the shape of the functiong, it is
possible to obtain interesting qualitative predictio
Moreover, the parameterm can be easily interprete
and has been directly measured in various experim
(examples in[5,18,40,43]). Some authors pointed ou
that the Hassell–Varley model did not accurately r
resent the results of some experiments: they sel
yield straight lines in the logN–logP plane (e.g.,[3]).
However, the BDA model does not do any better he
Another advantage of the HVH model is that there
a fixed boundarym = 1 that corresponds to the valu
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of the interference parameter above which the predato
can never control the prey. In the BDA model, on t
contrary, this value depends on the other parame
(condition (10)). Moreover, the valuem = 1 corre-
sponds to the ratio-dependent model, which can
urally be interpreted as the boundary over which in
ference leads to overcompensation (increasing pr
tor density leads to a loss ofper capita consumption
more than proportional).

In both HVH and BDA models, the ratio-depende
model is obtained with a high interference. It see
logical that a ratio-dependent functional respo
would arise when interference between predator
strong (i.e., the quantity of prey eaten per pre
tor only depends on the relative abundance of p
and predators). Indeed, a ratio-dependent consu
tion means that there is prey sharing among pred
individuals. This phenomenon is directly related w
interference (see preceding paragraph), which
vents each predator to behave as if there were no o
predators, which is the case in prey-dependent mod

We will conclude with a few evolutionary spec
lations suggested by the effects of the parameter
stability. Regarding the predator parameters other t
interference, the interest of both the individual and
the population consists in having high searching e
ciency, high conversion efficiency, low handling tim
and low mortality. All these parameters have mono
nous effects on predator population fitness. This is d
initely not the case for the interference parameter. B
models studied here predict that both too high and
low interference should lead to instability or extincti
of the population. However, the interest of individ
als is always to increase its interference with the ot
predators, e.g., being more aggressive to obtain m
food, or aggregating in patches with high prey de
sity [3]. The results obtained here imply that this te
dency would eventually lead the predator populat
to collapse. Although some studies giving estimate
the parameterm using the Hassell–Varley formalism
report values ofm larger than 1, our analysis sugge
r
.

that these situations should be rare in the field: pop
tions with an interference parameter larger than 1
at risk of becoming unstable if the carrying capac
of the prey is too low (e.g., in a ‘bad year’). Moreov
predator equilibrium densities rapidly decrease w
m rises. Given that form < 1, condition(8) shows that
the interaction between predators is a stabilising
tor, one could thus argue that evolution has selec
species of predators that have values ofm close to, but
smaller than 1. This could be an explanation of w
Arditi and Akcakaya[5] found that, in many sets o
experimental data,m was close to 1.

Finally, we have seen that in both models, bel
large values of the interaction parameter (m or w), the
prey density is proportional (or nearly proportion
to K. This means that, as individual selection ten
to favour high values of this parameter, control by
lower trophic level ought to be common. However
can be physically impossible to achieve high inter
tion, as it is the case for many herbivorous zooplank
species, which are known to have a significant ef
on phytoplankton density. Parasites are also know
have a significant effect on the control of some po
lations, and they are likely to have a small interfere
parameter. Thus, predators that can achieve a high
rect or indirect) interference should not control th
prey: this implies bottom-up regulation. Predators t
cannot interfere much should lead to top-down regu
tion.

Appendix A. Derivation of the Jacobians and of
the local stability criterion

A.1. HVH model

For the HVH model, the dynamical equations a
of the form:

dN/dt = fN (N,P ) = F(N) − g(NP−m)P

dP/dt = fP (N,P ) = eg(NP−m)P − qP

The Jacobian of the system is given inFig. 5.
J =
[

∂fN /∂N ∂fN/∂P

∂fP /∂N ∂fP /∂P

]

=
[

F ′(N) − P 1−mg′(NP−m) mNP−mg′(NP−m) − g(NP−m)

eP 1−mg′(NP−m) eg(NP−m) − emNP−mg′(NP−m) − q

]

Fig. 5.
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J =

F ′(N∗) − aP

1+awP+ahN
+ a2hNP

(1+awP+ahN)2
wa2NP

(1+awP+ahN)2
− aN

1+awP+ahN

eaP
1+awP+ahN

− ea2hNP

(1+awP+ahN)2
− ewa2NP

(1+awP+ahN)2
+ eaN

1+awP+ahN
− q




Fig. 6.
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We will use that at the non-trivial equilibrium, w
haveg(NP−m) = q/e because dP/dt = 0.

Moreover, using the type II (saturated) form ofg,

g(θ) = αθ

1+ αhθ

(
with g′(θ) = α

(1+ αhθ)2

)

we get at equilibriumNP−m = q/α(e−hq). Since we
are only interested in positive equilibria, this implie
e − hq > 0. Together with

g′(NP−m) = α

(1+ hαNP−m)2

= 1

α(NP−m)2

(
g(NP−m)

)2

= (α(e − hq))2

αe2

the Jacobian at the non-trivial equilibrium (if it exist
is:

(A.1)

J =
[

F ′(N) − P 1−m (α(e−hq))2

αe2 − q
e

[
1− m + m

hq
e

]
P 1−m (α(e−hq))2

αe
−m

q
e
(e − hq)

]

Form > 1 this Jacobian has the sign structure:[ ∗ < 0
> 0 < 0

]

From the implicit function theorem, we know th
the slope of the prey isocline (expressed withP as
a function ofN ) is given by−(∂fN/∂N)/(∂fN/∂P )

and since(∂fN/∂P ) < 0, a negative slope ensures th
(∂fN/∂N) < 0, which in turn results in a sign structu
with Tr J < 0 and detJ > 0. Thus, a negative slope o
the prey isocline guarantees stability of the non-triv
equilibrium.

Note that this result can be generalised for any s
tem whereg has the formg(NP−m) provided that
0 < m < 1, and thatg be an increasing concave fun
tion with g(0) = 0 and 0< g′(0) < ∞. To see this, al
we have to do is to find the sign of:

∂fN/∂P = mNP−mg′(NP−m) − g(NP−m)
The derivative of the functionx �→ mxg′(x)−g(x)

is mxg′′(x) − (1 − m)g′(x). If we assume thatg is
concave (i.e.g′′ < 0) and increasing (i.e.g′ > 0) and
0 < m < 1, then this latter expression is negati
The functionx �→ mxg′(x) − g(x) thus takes nega
tive values forx > 0, because it is a decreasing fun
tion that takes the value 0 atx = 0. In conclusion,
if the prey isocline decreases at the equilibrium, th
(∂fN/∂N) < 0 and thus the stability criterion is met

A.2. BDA model

Now the Jacobian is (seeFig. 6).
Using that at equilibrium

aN

1+ awP + ahN
= q

e
and

aP

1+ awP + ahN
= F(N)/N

we get:

(A.2)J =
[

F ′(N) − e−hq
e

F (N)
N

q
e

(
w

F(N)
N

− 1
)

(e − hq)F(N)
N

−qwF(N)
N

]
Note that we have∂fN/∂P < 0 becausewF(N)/N

= awP/(1+ ahN + awP ) < 1 at equilibrium. The
same stability condition as in the HVH model can th
be stated.

Appendix B. Derivation of the isoclines and
equilibrium properties for Malthusian growth

Let F(N) = rN .

B.1. HVH model

The prey isocline is given by

N = 1

αhr
(αP − rPm)

and the predator isocline by

N = q

α(e − hq)
Pm
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Since we are only interested in systems that ha
non-trivial equilibrium, the predator isocline must pa
through the positive quadrant of the phase plane.
will thus further assume here thate − hq > 0. Three
cases have to be distinguished with respect to the v
of m (presented graphically in the(N,P ) phase plane
seeFig. 1):

– if 0 � m < 1, the prey isocline implicitly define
a monotonous concave function ofN ∈ [0,+∞[
that increases from(r/α)1/(1−m) to +∞, while
the predator isocline is either a vertical line(m =
0) or a convex increasing function through the o
gin (Fig. 1a and b);

– if m = 1, both isoclines are straight lines throu
the origin. e > hq and α > r are required for
them to pass through the positive quadrant; t
cases may be distinguished according to the slo
of the two isoclines,er > α(e − hq) and er <

α(e − hq); in both cases, there is either extincti
or explosion, depending on the initial condition
(Fig. 1c and d);

– if m > 1, both isoclines are essentially non-line
(seeFig. 1e); note that, due to the fact that th
prey isocline crosses theP -axis in the origin and
in 1−m

√
r/α, there is only a bounded domain insi

which the prey decreases.

The shape of the isoclines suggests that ther
one and only one non-trivial equilibrium provided th
m 	= 1. Analytically, we obtain:

N∗ = q

er

(
er

α(e − hq)

)1/(1−m)

P ∗ =
(

er

α(e − hq)

)1/(1−m)

Note that the ratioN∗/P ∗ is equal to the value
q/(er) and thus does not depend either onα or h.

Fig. 1e suggests that the non-trivial equilibrium
never stable ifm > 1. We can see graphically that d
pending on the initial conditions in the neighbourho
of the equilibrium, a trajectory can either explode
the infinity or converge to(0,0), as in the casem = 1.

At the equilibrium, using(A.1), we get:

J =
[

r
hq
e

− q
e

(
(1− m) + m

hq
e

)
r(e − hq) −m

q
e
(e − hq)

]

Thus:

Tr J = q

e

(
rh − m(e − hq)

)

(B.1)

detJ = r

(
q

e

)
(e − hq)

[
−m

hq

e
+ (1− m) + m

hq

e

]

= r

(
q

e

)
(e − hq)(1− m)

A necessary condition for local stability is detJ > 0,
i.e. m < 1. The condition for the trace(Tr J < 0) is
equivalent to:

(B.2)m >
rh

e − hq
⇔ h <

me

r + mq

B.2. BDA model

The non-trivial equilibrium is

N∗ = q

a(e − hq − erw)
, P ∗ = er

q
N∗

and it exists if and only ifw < (e − hq)/er. Note that
this implies 1− rw > 0. The prey isocline, given by

P = r(1+ ahN)

a(1− wr)

is a straight line with positive slope and is shown
Fig. 1f.

Using(A.2) with F(N) = rN yields the expressio
of the Jacobian

J =
[

r
hq
e

q
e
(wr − 1)

r(e − hq) −qwr

]

and the criterion of local stability resolves to

h

e
< w <

e − hq

er

Appendix C. Derivation of the isoclines and
equilibrium properties for logistic growth

Let F(N) = rN(1 − N/K). We will first discuss
the general form of the isoclines and then discuss e
istence and stability of the nontrivial equilibrium.
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C.1. HVH model

Since the results form = 0 are classical, we sha
only deal withm > 0.

Since the predator isocline remains the same a
the case of Malthusian growth, we only have to disc
the form of the prey isocline, which is now given by

rαh

K
N2 + r

(
1

K
Pm − αh

)
N + αP − rPm = 0

This expression can be rewritten as:

N = ϕ±(P ) = K

2rαh

[
r

(
αh − 1

K
Pm

)

(C.1)

±
√

r2

(
αh − 1

K
Pm

)2

− 4rαh

K
(αP − rPm)

]

Let first 0< m < 1. There are two possibilities:

– (αhK)1−m < (r/α)m; ϕ− is always negative an
the isocline is given byϕ+ only, which is posi-
tive betweenP = 0 andP = (r/α)1/(1−m) where
it decreases fromN = K to N = 0 (seeFig. 2b);

– (αhK)1−m > (r/α)m; a graphical argument show
that the expression under the square root beco
zero at some valuēP whereϕ− andϕ+ are posi-
tive and equal, and that corresponds to a maxim
of the isocline as expressed asP as a function
of N . Fig. 2c shows that case.

Let nowm = 1. This case, better known as a rat
dependent model, has been studied extensively
main text for the references), so we will only sum
marise here the results. The predator isocline is alw
a straight line through the origin. For the prey isoclin
two cases arise:

– if α > r then the isocline is a parabola-like cur
that passes through the trivial equilibria(0,0) and
(K,0). In that case, a non-trivial equilibrium ex
ists if α(e − hq) < re;

– if α < r then it is a decreasing curve defined
[K r−α

r
,K] that passes through(K,0) providing

the existence of the non-trivial equilibrium.

Finally, letm > 1. Eq.(C.1)still holds, but now we
can see that for largeP , positive values ofN can be
defined. To study the shape of the curve, it is m
illustrative to make qualitative remarks than to try
study its derivative.

We will refer to the isocline as a set of two functio
N = ϕ−(P ) andN = ϕ+(P ). The following remarks
can be made:

– ϕ−(0) = 0 andϕ+(0) = K;
– ϕ− increases for smallP ; this is because the term

in P under the square root dominates the ter
in Pm;

– ϕ− only crosses the axeN = 0 in two points:
P = 0 and P = (α/r)1/(m−1); beyond this do-
main,ϕ− < 0 if it exists;

– ϕ+ < K (seen in Eq. (C.1)); it tends toK whenP

tends to infinity.

No trivial criterion can determine if the expressi
under the square root of(C.1) becomes negative o
not. However, it can be said that it can never hap
for P > (α/r)1/(m−1), whatever the parameters are
is easily seen from Eq.(C.1) – a graphical argumen
is shown inFig. 3f – that for K sufficiently large it
never happens. On the contrary, when(αhK)1/m <

(α/r)1/(m−1), i.e., for sufficiently smallK values, the
expression becomes negative in a bounded inte
of ]0,+∞] containing(αhK)1/m. Again, at the end
points of this interval,ϕ− = ϕ+.

Now one can have an idea of the possible shape
the isoclines in the(N,P ) phase plane.Fig. 3e shows
the case of lowK values when there is no equilibrium
and Fig. 3d the case of highK when there are two
equilibria, and expression(C.1) is defined for allP .
The intermediate case (two equilibria and a dom
where expression(C.1) is not defined) is represente
in Fig. 3f.

The predator and the prey equation resolve to

Pm = αe − hαq

q
N and P = r

q
N

(
1− N

K

)

respectively. Combining them gives the equation:

(C.2)N∗2 − KN∗ + K
q

er

(
αe − αhq

q
N∗

)1/m

= 0

This equation is of the form:

(C.3)ψ(N,K,γ ) = N2 − KN + Kγβ1/mN1/m = 0
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To study the stability, Eq.(A.1) implies:

J =

 r

(
1− 2N∗

K

) − P ∗1−m (αe−αhq)2

αe2 − q
e

(
1− m + m

hq
e

)
eP ∗1−m (αe−αhq)2

αe2 − q
e m(e − hq)




Using again the equations above, we get the follow
relation:

r(1− 2N∗/K) = 2r/N∗(N∗ − N∗2/K
) − r

= 2
q

e

(
αe − αhq

q

)1/m

N∗(1−m)/m − r

ReplacingP ∗1−m by ((αe − αhq)/q)(1−m)/mN(1−m)/m

we eventually get

(C.4)J =
[

q

e2 (
α(e−hq)

q )
1
m (e + hq)N

∗ 1−m
m − r − q

e (1− m + m
hq
e )

q
e (

α(e−hq)
q )

1
m (e − hq)N

∗ 1−m
m − q

e m(e − hq)

]

Case 0< m < 1. Eq.(C.3)can be rewritten as:

(N/K)1−m

(1− N/K)m
= 1

γ mβK1−m

Under this form, it is clear there is one and only o
equilibrium for eachK, and thatN∗/K is a function
of K that decreases from 1 to 0 whenK varies from 0
to infinity. That comes from the properties of the fun
tion:

θ ∈]0,1[ �→ θ1−m

(1− θ)m

that increases from 0 to infinity.
Moreover, applying the Implicit Function Theore

to Eq.(C.3)gives:

dN

dK
= −∂ψ/∂K

∂ψ/∂N
= mN2

K(mN + (1− m)(K − N))
> 0

Thus,N∗ as a function ofK increases. Moreover
tends to a limit that is identical to the value given
Eq.(C.3)when 1/K = 0, i.e.,N∗ = (γβ1/m)m/(1−m).

For K → 0 we haveN∗ → 0. Now, whenN∗ → 0
in (C.4), we have:

J →
[−r − q

e

(
1− m + m

hq
e

)
0 − q

e
m(e − hq)

]
which corresponds obviously to a stable equilibriu
(Tr J < 0 and detJ > 0). We then have TrJ increasing,
and

detJ = q

e2 (e − hq)

((
α(e − hq)

q

)1/m
× (1− 2m)N∗(1−m)/mq + emr

)

increases(m < 0.5) or decreases(m > 0.5) monoton-
ically whenK (thusN∗) increases, the other param
ters being held constant. This is because they both
linear functions ofN∗(1−m)/m. The limit values when
K∗ → +∞ are a positive one for detJ (which is there-
fore positive for anyK), and q

e
(rh − m(e − hq)) for

Tr J. They correspond to inequality(B.1) found inAp-
pendix B. Thus, criterion(B.2) found for stability in
the Malthusian case is a sufficient condition that t
system does not destabilise with enrichment (incre
ing K).

Note that, in particular, when(αhK)1−m < (r/α)m,
i.e., the prey isocline is decreasing as a function ofN ,
then the non-trivial equilibrium is always stable.

Case m = 1 (ratio-dependent). The non-trivial
equilibrium is given by:

N∗ = K

(
1− α(e − hq)

re

)

P ∗ = N∗ α(e − hq)

q

therefore, it exists if and only ifα(e − hq) < re. In
particular, whenr > α, it always exists.

The Jacobian is, according to(A.1):

J =
[

r(1− 2N∗/K) − (α(e−hq))2

αe2 −hq2

e2

(α(e−hq))2

αe
− q

e
(e − hq)

]

Whence

J =
[

α(e2−h2q2)

e2 − r −h
q2

e2

α(e−hq)2

e
− q

e
(e − hq)

]

Calculating TrJ and detJ, gives:

Tr J = −r + α(e2 − h2q2)

e2 − q

e
(e − hq)

= −r + α(e − hq)

e

(
1+ q

(
h

e
− 1

α

))

detJ = q

e
(e − hq)

∣∣∣∣∣
α(e2−h2q2)

e2 − r −h
q2

e2

α(e−hq)
e

−1

∣∣∣∣∣
=

(
r − α

e
(e − hq)

)
q

(e − hq)

e

Since the criterion for the positive equilibrium
exist isre > a(e −hq), detJ > 0, and the criterion fo
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stability reads:

r >
a(e − hq)

e

(
1+ q

(
h

e
− 1

a

))

In particular, one can see thate > ha implies stabil-
ity, because this inequality follows then simply fro
the existence condition for the equilibrium.

Case m > 1. It is better to rewrite Eq.(C.3)as:

(C.5)(N/K)m−1(1− N/K)m = γ mβ

Km−1

Now, the functionθ ∈]0,1[→ θm−1(1 − θ)m in-
creases from 0 to a maximum in]0,1[, and then de-
creases to 0. Thus for smallK, there is no non-trivia
equilibrium, and beyond a critical value that depen
on the other parameter there are two equilibria.
K → +∞, the larger equilibrium tends to infinity
while the smaller one tends to(γ mβ)1/(m−1), which
is simply the equilibrium in the case of Malthusia
growth.

Fig. 2e, f, and d show the evolution of the isoclin
whenK varies (K = 6,8 and 10, respectively). On
can see on these figures that, in the cases of largK

values, i.e., when two non-trivial equilibria exist, th
smaller equilibrium is unstable, and the higher one
stable.

C.2. BDA model

Let us first discuss the shape of the prey isocli
The non-trivial isocline for the prey is given by:

P = r(1− N/K)(1+ ahN)

a(1− rw) + arwN/K

As for the casem = 1 in the last model, two case
arise:

– rw < 1: we get a parabola like curve that reach
its maximum between 0 and K and that becom
negative forN > K.

– rw > 1: we get a decreasing curve that is posit
in [K rw−1

rw
,K].

The shape of the isoclines suggests that a neces
and sufficient condition to have a non-trivial equili
rium is that the predator isocline (the same as in
case of Malthusian growth) passes through theN -axis
y

between 0 andK, that is:

(C.6)
q

a(e − hq)
< K

We have:

(C.7)rN∗(1− N∗/K) = q

e
P ∗

and

P ∗ = 1

waq

(
a(e − hq)N∗ − q

)
SubstitutingP ∗ into Eq.(C.7), we get:

(C.8)
er

qK
N∗2 +

(
e − hq

wq
− er

q

)
N∗ − 1

wa
= 0

which has two solutions, but only one is positive un
condition(C.6):

N∗ = K

2er

(
er − e − hq

w

(C.9)+
√(

er − e − hq

w

)2

+ 4erq

Kwa

)

There are two possibilities:

– er < (e − hq)/w, thenN∗ has a limit whenK →
+∞; de l’Hopital’s rule yields:

N∞ = q

wa

√
(er − e−hq

w
)2

– er > (e − hq)/w (which is always the case whe
rw > 1); thenN∗ diverges and we have:

N∗ ≈
(

1− e − hq

erw

)
K

The Jacobian at equilibrium is, according
Eq.(A.2):

J =
[

r(−N/K + hq
e (1− N/K))

q
e (wr(1− N/K) − 1)

r(e − hq)(1− N/K) −qwr(1 − N/K)

]

Thus, the stability conditions are:

Tr J = r

[
q

(
h

e
− w

)
−

(
1+ q

(
h

e
− w

))
N∗

K

]
< 0

(C.10)

detJ = qr

(
1− N∗

K

)(
2N∗rw

K
+ 1− rw − hq

e

)
> 0
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Thus, TrJ < 0 is a necessary and sufficient criteri
for stability, because substitutingN∗ (Eq. (C.9)) into
the expression of detJ shows that the latter is alway
positive. Moreover, taking into account thatN∗/K <

1, one can see that a sufficient condition for stability
h < ew.

Appendix D. Comments to the stability portraits

D.1. HVH model

The effect ofK has already been studied when t
relationship of the logistic case with the Malthusi
case was discussed.

To get the shape of the domains of stability in t
logistic case, only qualitative remarks can be do
Eq. (C.4) shows that, for larger, the non-trivial equi-
librium is stable. This is because for largeK, the prey
densities are bounded, and thus the Jacobian is e
alent to:[

γ − r β

σ δ

]
for certain constantsγ,β,σ, δ. On the opposite, whe
r is small, there is a region qualitatively similar to t
one of Malthusian case for small values ofm.

Whenm > 1, Eq.(C.5) shows that, as for the cas
of parameterK, there is a boundary under which the
is no non-trivial equilibrium, and over which there a
two non-trivial equilibria, one unstable, and the oth
stable.

D.2. BDA model

Two cases must be distinguished when studying
effect ofK on stability. First, whener < (e − hq)/w,
thenN∗/K decreases from 1 to 0 whenK increases
fromq/(a(e − hq)) to +∞. Thus, TrJ varies monoto-
nously from−r to rq(h/e − w). Now we have two
cases:

– if h < we then we always have stability (we a
ready knew that);

– if h > we, then there is an upper limit onK for
stability.

In the second case, whener > (e − hq)/w, TrJ
varies monotonously from−r to r[q(h

e
− w)

e−hq
erw
-

− erw−e+hq
erw

]. According to the parameter values, the
is either always stability (andh < we is a sufficient
condition) or an upper limit onK for stability.

The effects ofr are somewhat simpler to unde
stand. For larger, condition(C.10)is always fulfilled
(because(C.9) implies N∗ → K whenr tends to in-
finity).

When r tends to zero, de l’Hôpital’s rule applie
to (C.9) shows thatN has the limitq/(a(e − hq)),
which is independent ofw. Thus, whenK is close to
q/(a(e−hq)), condition(C.10)is always fulfilled and
whenK is large, it is only fulfilled whenw > h/e.
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