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Abstract

Animal displacement plays a central role in many ecological questions. It can be interpreted as a combination of components that only

depend on the animal (for example a random walk) and external influences given by the heterogeneity of the environment. Here we treat

the case where animals switch between random walks in a homogeneous 2D environment and its 1D boundary, combined with a

tendency for wall-following behaviour (thigmotactism) that is treated as a Markovian process. In the first part we use mesoscopic

techniques to derive from these assumptions a set of partial differential equations (PDE) with specific boundary conditions and

parameters that are directly given by the individual displacement parameters. All assumptions and approximations made during this

derivation are rigorously validated for the case of exploratory behaviour of the ant Messor sanctus. These PDE predict that the stationary

density ratio between the 2D (centre) and 1D (border) environment only depends on the thigmotactic component, not on the size of the

centre or border areas. In the second part we test this prediction with the same exploratory behaviour of M. sanctus, in particular when

many ants move around simultaneously and may interact directly or indirectly. The prediction holds when there is a low degree of

heterogeneity (simple square arena with straight borders), the collective behaviour is ‘‘simply’’ the sum of the individual behaviours. But

this prediction breaks down when heterogeneity increases (obstacles inside the arena) due to the emergence of pheromone trails. Our

approach may be applied to study the effects of animal displacement in any environment where the animals are confronted with an

alternation of 2D space and 1D borders as for example in fragmented landscapes.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Animal displacement in space is a basic ingredient of
many questions arising in the context of ecology and
behavioural ecology (Parrish and Hamner, 1997; Turchin,
1998), in particular when trying to understand spatial
patterns such as clustering (Theraulaz et al., 2002; Jeanson
et al., 2005; Jost et al., 2007). A detailed understanding of
the role of displacement often requires mathematical
modelling. The most intuitive approach is a Lagrangian
or individual based model (IBM, Grimm and Railsback,
2005) that can readily be parameterized from observed

individual trajectories. However, IBM’s are computer
intensive, especially when many individuals are involved.
In such cases, Eulerian models that focus on animal
densities, such as (partial) differential equations (PDE, of
the reaction–diffusion type), become more efficient tools
and they are accessible to analytical study. The parameters
of a PDE can in simple cases be deduced from individual
trajectories, see Appendix A and Patlak (1953), Kareiva
and Shigesada (1983) or Benhamou (2004).
Individual animal displacement in a homogeneous space

can frequently be modelled as a correlated random walk
(Bovet and Benhamou, 1988; Turchin, 1998; Challet et al.,
2005). Such a random walk corresponds at the population
level to a diffusive process with a diffusion coefficient
that can be estimated from the animal’s movement
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characteristics (Patlak, 1953; Challet et al., 2005) or from
its net squared displacement (Einstein, 1905; Kareiva and
Shigesada, 1983). In the presence of simple heterogeneities
such as well defined borders, the random walk model may
no longer apply since displacement often corresponds to a
thigmotactic behaviour (Fraenkel and Gunn, 1961,
thigmo ¼ ‘touch’), that is a tendency to align with a border
and move along it for some time. Borders may also
separate two habitats (Fagan et al., 1999; Ovaskainen and
Cornell, 2003) where animals follow the border and then
choose randomly one or the other habitat. The times
moving along a border may depend on the border
curvature (Creed and Miller, 1990) and they are often
exponentially distributed (Sikora et al., 1992; Jeanson et
al., 2003), which indicates that the rate to leave the border
is constant in time.

In the first part of this paper we will start with an IBM
approach to model the movement of animals in 2D space
with borders (or edges) of different curvature. The under-
lying hypotheses of this IBM will be validated with
experimental trajectories of exploring Messor sanctus ants.
We will then develop a PDE model that is directly linked to
the characteristics of individual trajectories, in particular
those describing the random walk and wall-following
behaviours. Furthermore, we will validate experimentally
and by numerical simulations all the approximations that
occur when passing from the IBM to the PDE model. This
rigorously validated model will serve in future work to
understand more complex spatial phenomena such as
object clustering (Theraulaz et al., 2002) and its coupling
with external factors such as temperature (Challet et al.,
2005) or air currents (Jost et al., 2007).

The approach used by Patlak (1953) and in this paper
implicitly assumes that animals move the same indepen-
dently of whether they are alone or whether there are
conspecifics around. This is a strong assumption, in
particular for social insects that are known to exhibit
social interactions leading to collective movement along
well-defined recruitment trails (Camazine et al., 2001). In
the second part we therefore test experimentally (explora-
tory behaviour of M. sanctus ants) whether displacement at
the collective level corresponds to the sum of individual
displacements or whether something new emerges from the
interactions between individuals. Our test is based on the
model prediction that at stationary state the mean border
following time should determine the ratio of ant densities
in the central and border zones (Section 2).

2. The model and its predictions at stationary state

We consider ant displacement in an arena with a 2D
central zone and a 1D border zone. Let us denote by
ncðx; y; tÞ the (2D) ant density at coordinates ðx; yÞ at
time t, and by nbðs; tÞ the (1D) density at the (linear)
position s along the border at time t. In the central
zone ants move with a standard 2D diffusive random
walk. This corresponds at the macroscopic level to a

diffusion equation

qnc

qt
¼ �divð�Dc grad ncÞ ¼ �divð~|Þ,

where div denotes divergence, ~| ¼ �Dc grad nc is the flux
density vector and Dc is the diffusion coefficient computed
from the random walk parameters (see Appendix A and
Patlak, 1953 for further details). If Dc is constant in space it
can be extracted from the divergence term, leading to the
more familiar equation

qnc

qt
¼ Dc divðgrad ncÞ ¼ DcDnc (1)

with D ¼ q2=qx2 þ q2=qy2. Note that we use here the most
simple case of Fickian diffusion, but the reasoning below at
stationary state would also hold for other diffusion models
such as the Fokker–Planck or the telegraph equation.
Ants that move along the arena wall make U-turns at a

constant rate and thus also do a (1D) random walk. At the
macroscopic level the dynamics of nb can thus be described
as in Eq. (1), with the diffusion coefficient Db.
We now have to add to the model the passages from the

centre to the border and back. In order to formulate these
passages in terms of the underlying animal behaviour we
cannot reason on the density level (macroscopic) without
stating explicitly the statistics of the underlying directional
propagation (mesoscopic) on the basis of corpuscular
transport theory (Case and Zweifel, 1967), a technique
that was also used by Patlak (1953) or more recently
by Grünbaum (1999) and Faugeras and Maury (2007).
In the present case we have to consider the density of
ants at point ðx; yÞ that walk in direction ~u, the phase
space density f ðx; y;~u; tÞ. By definition (see Appendix A)
we have ncðx; y; tÞ ¼

R
~u f ðx; y;~u; tÞd~u and ~|ðx; y; tÞ ¼R

~u vcf ðx; y;~u; tÞ~ud~u (where vc is the ant speed in the central
zone). When establishing Eq. (1) on the basis of the
observed statistical behaviours (Appendix A), the so-called
P1 approximation is used for the angular dependance of f:

f ðx; y;~u; tÞ � ancðx; y; tÞ þ b~| �~u, (2)

where a and b are constant values. In two dimensions, this
corresponds to the first two terms of a Fourier series, with
a ¼ 1=ð2pÞ and b ¼ 1=ðpvcÞ. The total flux density from the
centre to the border through a particular point along the
border is now computed by integrating over all ~u:

vc

Z
centre!border

~u �~nf ðx; y;~u; tÞd~u

�
ð2Þ

vc

nc

2p

Z p=2

�p=2
cos gdg

þ
1

p

Z p=2

�p=2

cos g

sin g

 !
�~n

 !
~| �

cos g

sin g

 ! !
dg

¼ vc

ncðx; y; tÞ

p
þ

1

2
~| �~n,

where ~n is the (outward) normal vector to the border
segment and g is the angle between ~u and ~n.
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The passage from the border back to the centre of the
arena is given by the rate at which ants quit the border. If
we assume that this rate is Markovian and constant for
borders with fixed curvature then this rate is simply the
inverse of the mean border following distance before
returning to the central zone (1=lb). Denoting by vb the
animal speed along the border we get the flux density

nbðs; tÞ
vb

lb

.

Combining all these equations we get the macroscopic
equations

qnc

qt
¼ DcDnc, ð3Þ

qnb

qt
¼ DbDnb þ nc

vc

p
þ

1

2
~| �~n� nb

vb

lb

,

~| �~n ¼ nc

vc

p
þ

1

2
~| �~n� nb

vb

lb

boundary conditions,

where the last two equations simplify to

qnb

qt
¼ DbDnb þ 2 nc

vc

p
� nb

vb

lb

� �
, ð4Þ

~j �~n ¼ 2 nc

vc

p
� nb

vb

lb

� �
boundary conditions ð5Þ

and Eq. (5) represents the boundary conditions for Eq. (3)
in terms of flux density ~| �~n with the normal vector ~n
pointing outward. Eq. (4) has circular boundary conditions
(the arena border is closed). Note that the boundary
conditions (5) are unusual in traditional models of animal
movement that most often use reflecting boundaries ð~| �~n ¼
0Þ or absorbing boundaries (nc ¼ n0, a fixed value along the
border), see Turchin (1998) or Okubo and Levin (2001,
p. 301) for short summaries. For quantitative predictions
with this model we will perform numerical simulations
based on a time integration scheme (Euler scheme) and a
centred finite difference scheme for the spatial integration
(Press et al., 1992, p. 487).

At stationary state the fluxes to and from the border are
the same, that is

ns
c

vc

p
¼ ns

b

vb

lb

)
vb¼vc ns

c

p
¼

ns
b

lb

, (6)

where the superscript s indicates densities at stationary
state and where we further assume ant speed to be the same
in the centre and along the border. This reasoning can be
extended easily to account for two types of borders, for
example straight borders (walls, with linear density nw and
mean free path lw) and concave borders (for example
circular obstacles, nb and lb, see Fig. 5). We then get the
relations

lb ¼ p
ns

b

ns
c

and lw ¼ p
ns

w

ns
c

. (7)

These relations permit to validate the model predictions at
stationary state. We only have to estimate the mean
densities in the centre and the different border areas of the

arena once the system has reached its stationary state to
compute the predicted lb and lw. These values can then be
compared with the mean border following distances
measured on individual ants.
Note that predictions (7) hold because our ants move at

the same speed v ¼ vb ¼ vc in the centre and along the
borders. If they were to move at different speeds then v

would not cancel out in Eq. (6) and the speeds would be
part of the predicted density ratios in Eq. (7).

3. Estimating individual displacement parameters and

validating model hypotheses

Experiments were performed with a colony of the
Mediterranean seed-harvesting ant M. sanctus Emery
(Myrmicinae). All experiments were done in a closed
chamber of size 35� 35� 30 cm (length, width, height)
whose walls and floor were painted white and which was
covered by a transparent acrylic glass. Since temperature
influences ant displacement (Challet et al., 2005) we
controlled it through circulating water set at a constant
temperature ð23 �CÞ in the chamber floor and walls (Jost
et al., 2007). Outside temperature was set to � 24 �C to
ensure that the temperature of the acrylic glass covering the
chamber did not create any convective air currents. The ant
colony was placed beneath the closed chamber and ants
had access to the chamber floor (subsequently called arena)
freely by climbing along a small wooden stick through a
hole in the centre of the arena (see Jost et al., 2007 for
further details). Access to this wooden stick could
experimentally be interrupted to control the number of
ants in the arena. Ant displacement was then filmed
through the acrylic glass (Sony digital camera DCR-
VX2000E). The arena was either empty, containing three
circular obstacles (6 cm diameter, curvature 1

3
cm�1), seven

obstacles (4 cm, 1
2 cm

�1) or 10 obstacles (2 cm, 1 cm�1), see
Fig. 5. For the obstacles we chose white cylinders of height
1 cm that were coated with Fluonr in order to prevent the
ants from mounting on them.
In a first series of experiments we had to confirm that

M. sanctus ants move indeed with diffusive random walks.
Individual animal displacement was analysed in two parts
of the arena: the border zone (that consists of a 1 cm wide
strip along the border of walls or obstacles) and the central
zone. One cm corresponds approximately to the distance
over which a M. sanctus ant can detect conspecifics or the
obstacles that we used (Fourcassié et al., 2003). To analyse
displacement in the central zone, an ant was given access to
the arena and filmed during 1min or until it hit the arena
wall. Its path was then digitized with Ethovision (version
3.0, Noldus Information Technology) at the rate of two
points per second. Seventy-seven paths were obtained and
analysed to extract the random walk parameters (Turchin,
1998; Challet et al., 2005). Computing the net squared
displacement from these paths will permit to validate the
non-stationary (diffusive) dynamics in the central zone
(Einstein, 1905). This is technically equivalent to say that
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the P1-approximation made when deriving the PDE
(Appendix A) holds. The diffusion coefficient Dc could
be computed from the slope of the net squared displace-
ment curve (Kareiva and Shigesada, 1983), but in analogy
with the mesoscopic reasoning in Appendix A we will
estimate it from the behavioural displacement parameters.
Each path was decomposed into a sequence of straight
moves (free paths) and turning angles between moves (see
Challet et al., 2005 for details). Since for technical reasons
moves have a minimal length (here 1 cm to remove artificial
moves due to digitization noise, Tourtellot et al., 1991) the
mean move length or mean free path l was not simply
estimated as the mean of the moves (which would be
positively biased) but as the inverse of the survival curve
slope on log-linear scale, obtained with weighted linear
regression where the weights are the standard errors
around the survival curve (Haccou and Meelis, 1992). This
procedure also permits to test whether the survival curve
follows an exponential distribution (Haccou and Meelis,
1992, p. 144). The distribution of the turning angles was
tested for symmetry (Zar, 1999, p. 115) and its shape
quantified by the mean cosine g (which is close to 1 for
forward oriented paths, 0 for uniformly distributed turning
angles and close to �1 when there is a high tendency for
U-turns; see Appendix A for a formal definition). Free
paths and turning angles were also tested for autocorrela-
tion. Finally, the speed v was estimated as the total path
length divided by the recording time. The mean values
ð� seÞ of the parameters l, g, and v were computed from
the 77 paths. This allowed us to compute the diffu-
sion coefficient Dc ¼ vl=ð2ð1� gÞÞ used in Eq. (3) (see
Appendix A). The diffusion coefficient corresponding to
border following behaviour Db can be estimated similarly
as Db ¼ v2=ð2=tb þ 1=tqÞ with tb and tq being the mean
time walked along the border before making a U-turn or
leaving the border, respectively (see Appendix A for more
theoretical background).

To analyse border following behaviour 30–40 ants were
allowed to enter the arena (before interrupting the access
with the wooden stick) and their displacement was filmed
continuously. This procedure was used to increase the
number of border following events. When an ant entered
the 1 cm wide strip along the arena walls or obstacle
borders and remained there for at least 2 s (to ensure that it
was indeed in the border following behavioural mode) we
measured the total time before the ant leaves the border or
makes a U-turn (at most the first 10 events were taken per
obstacle to reduce any potential effect of chemical
marking). We only took into account events during which
ants had no contact with conspecifics. These times were
also analysed as survival curves to estimate the mean time
an ant follows a border. The standard error of this mean
time was estimated with a non-parametric bootstrap. A
Kruskal–Wallis test was used to compare the times of the
different obstacle diameters. The mean border following
distances l (see Section 2) were obtained by multiplying the
mean times by the mean speed v.

3.1. Estimating ant densities in the arena

To estimate the average ant densities in the centre and
border zone 30–40 ants were given access to the arena.
After 30min (to let these ants reach a stationary distribu-
tion, see Fig. 4) the whole arena was filmed for 90min. This
film was analysed at 1 frame per second in order to get an
estimate of the mean density over the arena during this
duration.
First a mask was fitted in order to exclude from the

analysis all obstacle surfaces and a zone of 1 cm around the
central entry hole. Then a grey level threshold was
calibrated by eye to distinguish pixels belonging to ants
(above the threshold) from the pixels of the background.
The mean frequency of ants on a pixel was estimated as the
number of frames an ant was detected on this pixel, divided
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by the total number of analysed frames. These frequencies
were then summed over all pixels belonging either to the
central zone, the wall border zone or the obstacle border
zone. Dividing these sums by the total surface of the central
zone or the length of the 1 cm wide bands along the borders
finally gave a relative measure of ant density in these zones
during the 90min observation time. The fraction of border
density by the centre density (multiplied by p and divided
by mean ant speed v, see Section 2) gave the predicted mean
border following time.

During the image analysis some pixels turned out to be
above the threshold almost throughout the whole 90min

without any ants on them (mostly ‘shaded’ pixels close to
the wall or obstacles). There was no way to identify these
pixels unambiguously. Therefore we removed from the
density analysis 5–10% of the densest pixels, giving a range
of estimates for the border following times. Since this range
has no statistical meaning such as a standard error, we
compared these ranges only qualitatively to the measured
border following times.

4. Results

Ants walked with a mean speed of v ¼ 1:40�
0:04 cm=s ðmean� seÞ. Comparison between ant speeds in
the centre and along the border showed no difference
ðF 1;28 ¼ 1:76; p ¼ 0:195Þ. The paths had non-correlated
exponentially distributed free paths with mean free path
l ¼ 0:77� 0:04 cm and non-correlated turning angles with
a symmetric distribution and a mean asymmetry coefficient
g ¼ 0:62� 0:01. These values result in a diffusion coeffi-
cient of Dc ¼ 1:42� 0:14 cm2=s. The net squared displace-
ment of these paths (Fig. 1A) becomes a linear function of
time after 2 s. M. sanctus ants therefore did indeed move
according to Fickian diffusion in the arena centre (the P1-
approximation holds).
The mean border following times ðtqÞ are 7:82� 1:17 s

for wall following, 5:91� 1:74 s for 6 cm obstacles, 2:48�
0:50 s for 4 cm obstacles and 3:31� 0:69 s for 2 cm
obstacles. Note that these times result in border following
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distances that are in all cases much longer than 2l, a value
we would expect if ants were to achieve a 2D random walk
along the wall and simply continue walking straight ahead
if the turning angle made them turn towards the wall.
M. sanctus ants therefore show indeed thigmotactic beha-
viour. There was a significant effect of obstacle curvature on
these times (Kruskal–Wallis test, w2 ¼ 135:33, df ¼ 3,
po10�3). The border following times decreased with
decreasing obstacle diameter (Fig. 2). The survival curves
of the border following times (Fig. 3) show that the
individual times were distributed exponentially for wall as
well as for circular obstacles following. This result confirms
the model hypothesis (see Section 2) that border following
can be modelled as a Markovian process with a constant rate
to quit the border. The mean wall following time before
making a U-turn ðtbÞ is 31:5� 4:1 s. Combined with ant
speed v and the mean wall following time before quitting it
ðtqÞ we obtain the diffusion coefficient along the arena wall
Db ¼ 10:2� 1:3 cm2=s.

These mean wall following distances are of the same
order of magnitude as the arena size. This raises the ques-
tion whether the diffusion approximation (Appendix A) is
appropriate for the non-stationary dynamics. To answer
this question we can make numerical simulations with
either Fickian diffusion or the telegraph equation (which
does not make the diffusion approximation). For the
telegraph equation we used the same numerical scheme as
for Fickian diffusion, but with the flux density on the
border implemented as an additional state variable
according to Eq. (12). Fig. 1B shows that the dynamics
of the two systems are practically the same, Fickian
diffusion is therefore a reasonably good approximation of
ant displacement along the border also during the non-
stationary dynamics.

The spatio-temporal dynamics of models (3)–(5) with the
parameter values estimated from the experiments and for
the case of the empty arena are shown in Fig. 4. In the
beginning the density equivalent to 40 ants is placed in the
centre of the arena (where the real ants enter). These ants
immediately start to diffuse (Fig. 4A) and reach the border
within the first 20 s (Fig. 4F). Stationary state is reached
after 5min (Figs. 4D,H and 1B)). The 30min allowed to
reach this state in the real experiments are therefore largely
sufficient.

The mean following times predicted by the model from
the measured ant densities (Eq. (7)) and the times measured
directly from individual ant movement show the same
trend (Fig. 2). There is therefore a qualitative validation of
the model prediction at stationary state. In the case of
arena walls or large obstacles (6 cm) the predicted ranges
also show some overlap with the 95% confidence interval
of the border following times measured directly. However,
this overlap disappears for smaller obstacles. This quanti-
tative difference shows up qualitatively in the density plots
(Fig. 5): while in the first case (no obstacles or large ones,
Fig. 5A,B) ant density outside the border areas looks rather
homogeneous (besides some increased density around the

entry hole), distinct high density ‘‘routes’’ can be identified
for smaller obstacles (Fig. 5C,D). These areas might arise
for several reasons: (a) the obstacles channel the moving
ants, (b) ants memorize routes with obstacles as landmarks
or (c) ants mark their path by pheromones that guide other
ants. In order to test these hypotheses we made an
additional experiment with seven obstacles of 4 cm
diameter and let it run for 2 h (analysing the densities
during the last 90min as above). We then removed the
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obstacles and analysed ant displacement during another
90min. The result (Fig. 6) was clear: the ants follow exactly
the same routes. Since there are no more obstacles or
landmarks ants must follow a pheromone trail.

5. Discussion

In this paper we pursue two objectives: (1) the rigorous
derivation and validation of a model of ant displacement in

2D space with 1D borders, and (2) to use the stationary
state predictions of this model to test whether the
simultaneous displacement of many ants is ‘‘simply’’ the
sum of the individual displacements.
Concerning the first objective our analysis confirms that

the displacement of a single M. sanctus ant in a
homogeneous 2D environment can be modelled as a
correlated random walk (Challet et al., 2005). Such
correlated random walks are common for many insects

ARTICLE IN PRESS

Fig. 5. Examples of the experimental mean density of ants (averaged over 90min, high density indicated by white, low density by dark grey) observed in

an empty arena (A), with three large obstacles (6 cm diameter, B), seven median obstacles (4 cm, C) or 10 small obstacles (2 cm, D).
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(Kareiva and Shigesada, 1983; Jeanson et al., 2003). These
ants can be assumed to detect walls from a distance of
1 cm. If an ant were to use the same kind of correlated
random walk along a wall and simply continue to move
straight ahead when it is blocked by the wall we would
expect a wall following distance approximately equal to
twice the mean free path in the centre. The measured mean
wall following distance was much above this value,
showing unambiguously that the ants did have a thigmo-

tactic behaviour. Such thigmotactic behaviour has been
reported in several species of insects and investigated from
a behavioural (Creed and Miller, 1990; Sikora et al., 1992;
Camhi and Johnson, 1999; Dussutour et al., 2005) and
from a physiological point of view (Cowan et al., 2006). We
further showed that the rate to leave the border increased
with higher curvature (more concave borders), exactly as
Creed and Miller (1990) have observed for the American
cockroach Periplaneta americana L. For a given curvature,
however, the rate to leave the border remained constant (a
homogeneous Markov process). Jeanson et al. (2003) have
shown this Markov property for thigmotactic behaviour of
first instar larvae of the German cockroach. Here we
confirm and characterize this type of thigmotactic beha-
viour for the ant M. sanctus.
The description of insect displacement as a combination

of a correlated random walk and thigmotactism with the
Markov property is sufficient to create an IBM of animal
movement. Here we go a step further by applying a
mesoscopic approach to this IBM in order to derive
continuous PDE of the diffusion type that permit to
describe animal densities in a bounded space. All the
approximations made in this derivation (diffusion and P1
approximation) have been validated for the case of
M. sanctus exploratory behaviour.
Such a rigorously validated PDE model of ant displace-

ment is a good starting point to study more complex spatial
phenomena such as the object clustering reported in Jost
et al. (2007). In the context of foraging M. sanctus ants are
also known to create and move along pheromone trails
(Jackson et al., 1989; Grasso et al., 1998, 1999), but no such
collective behaviour has been reported for exploratory
behaviour (though experiments in Fourcassié et al., 2003
suggest its existence). The predictions of our model should
therefore also hold when many ants explore space
simultaneously. We use in particular the prediction that
the ratio of border over centre ant density at stationary
state only depends on the thigmotactic component.
Numerical simulations of the PDE show that this
stationary state is reached within a couple of minutes.
Testing this prediction with M. sanctus we show that it
holds rather well in the case of an empty arena or if there
are only few large obstacles. However, in the presence of
strong heterogeneities in the form of many small obstacles
the prediction breaks down and we demonstrate that ants
lay and follow pheromone trails. A collective displacement
mode is thus emerging. Further experimental work is
required to identify the stimuli that trigger trail laying
behaviour in M. sanctus ants. Pheromone marking might
also occur permanently during exploratory displacement.
In this case, if the ant movement is channelled by the
obstacles, the ant density could increase sufficiently to
create a persistent pheromone trail.
Habitat fragmentation increasingly leads to a mosaic

landscape where animals are confronted with an alterna-
tion of borders and open space. Animal displacement in
such heterogeneous environments is at the core of many
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Fig. 6. Mean ant densities before (A) and after (B) removal of seven

median obstacles (4 cm diameter). Ants clearly continue to follow the same

(white) trail.
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questions in ecology (e.g. Turchin, 1991; Johnson et al.,
1992; Fagan et al., 1999; With et al., 1999; Ovaskainen and
Cornell, 2003; Morales et al., 2005) and individual
behaviour provides essential information to understand
processes at the landscape level (Morales and Ellner,
2002). The mesoscopic approach provides a way on how to
scale up from the individual to the population level in
landscape ecology studies. The resulting PDE models are
accessible to various non-linear analyses that permit to
study phenomena on the system level while still being
well-grounded in the individual statistical behaviour. They
may thus be particularly useful in conservation biology to
understand population level responses to landscape
change.
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Appendix A. The mesoscopic derivation of the diffusion

equation

Though it is commonly known that (correlated)
random walks can be described at the population level by
diffusion equations, the underlying mathematics are not
always accessible to the general biological reader, in
particular the link between the diffusion coefficient and
the individual movement parameters. This situation is
complicated by the variety of notations and names used in
the literature. To clarify the approach used in the present
paper we will show here how the diffusion equation
emerges from the individual movement behaviour. More
formal developments can be found in Patlak (1953,
ecological context) and Case and Zweifel (1967, statistical
mechanics). This development will also highlight the
underlying approximations and permit us to discuss their
pertinence in the analysed experiments. The resulting
model is therefore well-grounded in the underlying
statistical individual behaviour and not simply an empirical
PDE model.

A.1. From the pure transport equation to the mesoscopic

model

Let f ¼ f ð~r;~u; tÞ be the density of ants at time t and at the
position ~r that move in direction ~u (the so-called distribu-
tion function in statistical physics). ~r and ~u are vectors in
Rd , with d ¼ 1; 2 or 3. We will first derive the transport
equation in a heuristic way.

If the ants move at constant speed v in direction ~u and do
not change direction we get the equation

f ð~r;~u; tÞ ¼ f ð~rþ v~udt;~u; tþ dtÞ. (8)

Or, making a Taylor expansion of the right side of
Eq. (8) and still considering only ants moving in direction
~u gives

f ð~rþ v~udt;~u; tþ dtÞ � f ð~r;~u; tÞ þ
qf

qt
dtþ

qf

q~r
�
q~r
qt

dt. (9)

Combining Eqs. (8) and (9) and using that qf =q~r ¼
grad f ; q~r=qt ¼ v~u results in

0 ¼ f ð~rþ v~udt;~u; tþ dtÞ � f ð~r;~u; tÞ

�
qf

qt
dtþ v~u � grad f dt

¼) 0 �
qf

qt
þ v~u � grad f

(where grad is the gradient operator). This is the transport
equation that we will put on the left side of the mesoscopic
equation, while we add on the right all the terms where ants
join or quit f ð~r;~u; tÞ,

qf

qt
þ v~u � grad f ¼

Z
~u0

1

tb

oð~uj~u0Þf 0 d~u0

�

Z
~u0

1

tb

oð~u0j~uÞf d~u0 �
1

tq

f , ð10Þ

where the first part represents the ants currently moving in
direction ~u0 that change their direction to ~u, the second part
considers those who change their direction from ~u to ~u0 and
the third those that are lost from the system (this term will
account for the ants quitting the border and returning to
the centre). f 0 simply denotes f ð~r;~u0; tÞ. tb is the mean time
walking straight ahead before turning, and oð~uj~u0Þ is the
probability density function that an ant moving in
direction ~u0 will change to direction ~u (also called the
phase function). We assume that turning happens at a
constant rate and only depends on the cosine between ~u
and ~u0,

oð~uj~u0Þ � oð~u �~u0Þ.

Until here no approximations were made, we only
translated the exponential features of the individual
statistical behaviour (observed in Fig. 3) in terms of the
distribution function f.

A.2. The passage to the macroscopic model

We now want to derive the corresponding equations for
the macroscopic variables, local ant density nð~r; tÞ ¼R
~u f ð~r;~u; tÞd~u and the flux density vector ~|ð~r; tÞ ¼R
~u vf ð~r;~u; tÞ~ud~u. Doing so we will have to make assump-
tions to get rid of the directional character of the
distribution function (passage from the mesoscopic to the
macroscopic description).
For the local ant density we simply integrate Eq. (10)

over all directions ~u. The algebra for the transport term is
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quite straightforward,Z
~u

qf

qt
þ v~u � grad f

� �
d~u ¼

Z
u

qf

qt
d~uþ v

Z
~u

~u � grad f d~u

¼
qn

qt
þ v div

Z
~u

f~u d~u ¼
qn

qt
þ div~|

with div being the divergence operator.
The integration of the right side of Eq. (10) is also

straightforward, we getZ
~u

Z
~u0

oð~u0 �~uÞ
tb

f d~u0 d~u ¼

Z
~u

f

tb

Z
~u0
oð~u0 �~uÞd~u0|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼1

d~u ¼
n

tb

,

Z
~u

Z
~u0

oð~u �~u0Þ
tb

f 0 d~u0 d~u ¼
1

tb

Z
~u0

f 0
Z
~u
oð~u �~u0Þd~u|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼1

d~u0 ¼
n

tb

,

Z
~u

1

tq

f d~u ¼
n

tq

.

In sum, we get the macroscopic equation

qn

qt
þ div~| ¼

n

tb

�
n

tb

�
n

tq

¼ �
n

tq

. (11)

To get the macroscopic equation for the flux we simply
multiply Eq. (10) by ~u before integrating over all ~u,Z
~u

qf

qt
~uþ v~u � grad f~u

� �
d~u ¼

Z
~u

Z
~u0
oð~uj~u0Þf 0~ud~u0 d~u

�

Z
~u

Z
~u0
oð~u0j~uÞf~u d~u0 d~u

�

Z
~u

1

tq

f~ud~u.

While the right side is also straightforward to integrate, the
left side is slightly more complicated (not detailed here, see
for example Case and Zweifel, 1967). The result is the
equation

q~|
qt
þ

v2

d
grad n � ðg� 1Þ

1

tb

�
1

tq

� �
~| (12)

with g ¼
R
~u0 ð~u
0
�~uÞoð~u0 �~uÞd~u0 being the mean cosine of the

phase function. Note that this equation is exact only for
d ¼ 1. In higher dimensions one must make the so-called
P1-approximation (Case and Zweifel, 1967). The name P1
means that in 3D or 2D only the first two terms of the
spherical harmonic decomposition or the Fourier series are
kept, respectively. If this P1-approximation did not hold
then the mean net squared displaced of animals (Fig. 1)
would no longer become a linear function of time.

A.3. Application to the experimental system

Since the measured mean free paths in our experimental
system are much smaller than the arena dimension we can
make the diffusion approximation (stationary assumption
for the flux density, q~|=qt ¼ 0), Eq. (12) therefore yields

~| ¼ �ðv2=dðð1� gÞ=tb þ 1=tqÞÞ grad n that we can plug into
Eq. (11),

qn

qt
¼ � div~| ¼

v2

dðð1� gÞ=tb þ 1=tqÞ
div grad n

¼
v2

dðð1� gÞ=tb þ 1=tqÞ
Dn.

This is standard Fickian diffusion with a diffusion
coefficient

D ¼
v2

dðð1� gÞ=tb þ 1=tqÞ
.

In the arena centre ðd ¼ 2Þ no ants disappear (that is, there
is no term involving tq) and tb is the mean free path l

divided by ant speed v,

Dc ¼
v2

2ð1� gÞv=l
¼

vl

2ð1� gÞ
.

Along the border ðd ¼ 1Þ tq corresponds to the mean time
of border following before returning to the centre area and
tb is the mean time before making a U-turn. The phase
function is in this case a discrete probability function with
value 1 in case of a U-turn ð~u �~u0 ¼ �1Þ and value 0 for
continuing in the same direction ð~u �~u0 ¼ 1Þ, we therefore
get g ¼ �1 and the diffusion coefficient becomes

Db ¼
v2

2=tb þ 1=tq

.

Note that without the diffusion approximation we would
simply get the telegraph equation. The stationary state
predictions are not changed by this approximation, but the
non-stationary dynamics are affected. In our system the
mean wall following distances are long compared to the
arena size, it is therefore useful to test the effect on non-
stationary dynamics by numerical simulations.
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