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Abstract The trajectories of Kuhlia mugil fish swimming freely in a tank are
analyzed in order to develop a model of spontaneous fish movement. The data show
that K. mugil displacement is best described by turning speed and its auto-correlation.
The continuous-time process governing this new kind of displacement is modelled by
a stochastic differential equation of Ornstein–Uhlenbeck family: the persistent turn-
ing walker. The associated diffusive dynamics are compared to the standard persistent
random walker model and we show that the resulting diffusion coefficient scales
non-linearly with linear swimming speed. In order to illustrate how interactions with
other fish or the environment can be added to this spontaneous movement model we
quantify the effect of tank walls on the turning speed and adequately reproduce the
characteristics of the observed fish trajectories.
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1 Introduction

The highly coordinated displacement of hundreds or thousands of fish in so-called
fish schools has been the focus of many theoretical and some experimental studies.
The spatial group cohesion, unless it is ensured by a confining environment, must be
the result of interactions between the animals. As in any collective behaviour, these
interactions should be considered as individual decision processes that synchronise
the behavioural outputs [12].

Many authors have tried to understand these collective behaviours from a theoret-
ical perspective. They propose biologically plausible (but nevertheless hypothetical)
interactions that lead to a synchronization of the fish headings (moving directions),
see [18,61] and references therein. The interactions are implemented as a set of neigh-
bour-dependent rules that modify a null-model of spontaneous and independent fish
displacement. Such a null-model may gain particular importance in the case of fish
groups with clearly identified leaders that swim rather independently ahead of the
group, their null-model may therefore dominate the landscape of the collective pat-
terns [18,19,24,60].

In most of these studies this null-model is a random walk, that is the animal path
is characterized by a series of straight moves separated by reorientation behaviour.
In some cases, the new heading is simply uniformly distributed and the time series
of headings obeys a Markov process of order 0 (pure random walk). More often, the
new heading is a small deviation from the previous headings and the null-model cor-
responds to a correlated random walk or persistent random walker [34]. In this case,
the time series of headings obeys a Markov process of order 1 (consecutive headings
are auto-correlated) , and the time series of the turning angles obeys a Markov process
of order 0 (consecutive turning angles are independent).

However, most of these studies are only loosely linked to biological data. In order
to move towards a biological validation some experimental studies have attacked
the quantitative description of the collective swimming behaviour [3,36,49] and its
comparison to model predictions. Only very few studies have directly addressed the
experimental identification and quantification of the underlying interactions between
individuals [26,46], and they all used the pure random walk as the null-model.

It is important to note that the estimation of interaction parameters depends cru-
cially on the choice of the null-model. The prerequisite for such an estimation is the
existence of a validated null-model of spontaneous displacement since interactions are
detected as the departures from such a null-model. We therefore advocate that a prior
step to interaction analysis is to quantify this spontaneous behavior experimentally and
to check whether the random walk model indeed holds for an isolated fish. Otherwise
a better grounded spontaneous model must be developed. To be applicable, this model
should work as much as possible at the same space and time scale as the suspected
interactions.

To address this question, we quantify in the present paper the experimental trajec-
tories of nine isolated fish that swim in a circular tank. The fish were Barred flagtail
(Kuhlia mugil), a 20–25 cm pelagic fish that lives in schools along the coral reefs in
La Réunion Island. In a data-driven approach we first develop a stochastic kinematic
model of their swimming behavior in the form of stochastic differential equations
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(sde): the persistent turning walker (PTW). This model is characterised by a constant
swimming speed and an autocorrelation of the angular speed (turning angle per unit
time) rather than autocorrelation of the heading as in the correlated random walk.
The exploration of the model properties will help to identify the major differences to
the random walk model, in particular the expected collective behaviour when many
individuals move according to this null-model. In a second step we will also explore
how to add interactions to this null-model by quantifying the interaction between the
fish and the tank wall. This interaction takes the form of an additional term in the
stochastic differential equation that bends the fish trajectory away from the wall.
The extended model will be used to compare directly the net squared displacement
between experimental and simulated trajectories.

2 Data collection

In the experiments described in [53], nine fish were filmed while swimming alone in
a circular tank of radius R = 2 m, depth 1.2 m and filled with still clean sea water.
The limited water depth ensured that the fish were swimming on a planar level, that
is in two dimensions.

For each individual, two minutes were extracted from digital video recordings and
the position of the individual’s head was tracked every 1/12 s (1,440 points per trajec-
tory). Perspective errors were corrected, and oscillations of periods shorter or equal
to 8/12 s that are due to the beating mode of swimming were removed using wavelet
filtering with Daubechies bank of length 10 (Wave++ package [22]). This filtering
procedure yielded the trajectory of the fish body and was never farther than 2 cm
from the tracked head (for a fish of length 20 cm). These trajectories appeared rather
winding (spiral course) with no well-defined points of directional changes as would be
expected in standard correlated random walks (Fig. 1). Some fish exhibited some kind
of thigmotactic behaviour (wall following/attraction, see fishes 1, 4 and 5) whereas
the others displayed simple wall avoidance type patterns.

Cartesian 2D coordinates are arbitrary with respect to the origin and orientation
of the axis, they are therefore badly suited to analyze movement. To adopt the fish
point of view they were converted into the intrinsic coordinates along the trajectories.
Starting from the initial point P(0) at t = 0, intrinsic coordinates (S(t), ϕ(t)) denote,
respectively, the curvilinear abscissa and the heading at time t when the fish is at
position P(t). The curvilinear abscissa S(t) is the length of the trajectory since t = 0
when S(0) = 0. Correspondingly, the heading ϕ(t) is computed relative to the initial
heading ϕ(0) at t = 0 (see Fig. 2). The time derivatives of these intrinsic coordinates
are, respectively, the swimming (tangent) speed V (t) (m/s, which is the norm of the
speed vector V(t)) and the turning speed W (t) (rad/s).

To minimize the error due to time discretization, we estimated the intrinsic coor-
dinates at each point Pi = P(i∆t), i = 1, . . . , 1,338, by fitting a circle to the three
consecutive points Pi−1, Pi , Pi+1. We then recovered ∆si and ∆ϕi (counter-clockwise
coded as positive) for each middle point Pi as shown in Fig. 2. The instantaneous
swimming speed Vi and turning speed Wi were then estimated by
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Fig. 1 Nine fish trajectories in the water tank. The trajectories are displayed ranked by the fish speed, from
the slowest (fish 1, mean speed 0.16 m/s) to the fastest (fish 9, mean speed 0.56 m/s). The outer circle
indicates the tank wall and axis units are in meters
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Fig. 2 Symbols used in the path analysis. P(t) is the fish position at time t , V (t) its speed vector and S(t)
the path length since the beginning of the path P(0). On the right side, the fitted circle arc (bold line) used
for quantifying the intrinsic coordinates was superimposed on the actual fish trajectory . Pi denotes P(ti ),
that is the position of the fish at time step i

̂Vi = ∆s

2∆t
(1)

̂Wi = ∆ϕ

2∆t
(2)

The curvilinear abscissa Si and heading ϕi at point Pi were recovered by integrat-
ing the corresponding speeds over time, starting from the second point of the series
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(P1 = P(∆t)), according to the equations

̂Si =
∫

∆t<t<i∆t

d S(t) �
i−1
∑

j=1

̂Vj∆t (3)

ϕ̂i =
∫

∆t<t<i∆t

dϕ(t) �
i−1
∑

j=1

̂W j∆t (4)

Note that this procedure yields a heading value ϕi which is relative to the head-
ing at the starting point P1 and can fluctuate away from the standard trigonometric
limits [−π, . . . ,+π ] because ϕi is not taken modulo 2π (e.g. three complete counter-
clockwise revolutions would yield a ϕ-shift of 3 × 2π ). Such a definition of heading
is the most relevant one when dealing with rotational diffusion [9,11,47] because it
is consistent with the continuous evolution of the heading (no artificial jumps at the
transitions between −π and π ).

3 Kinematic model

3.1 Rationale for the model

The time evolution of S(t) indicated that the swimming speeds could be considered
as constant for each fish (Fig. 3a: constant slopes with some residual tracking noise)
but different across fishes. As for the time evolution of the heading, we found that the
autocorrelation of the turning speed 〈Wi , Wi+h〉 was significant over several seconds
(Fig. 3b). Contrastingly, an essential property of random walks is that consecutive
changes of heading are independent. Therefore, the autocorrelation of the turning
speeds, defined as

〈(ϕi − ϕi−1)/∆t, (ϕi+1 − ϕi )/∆t〉 = 〈Wi , Wi+1〉, (5)

would be negligible. This is obviously not the case in our data. Hence, the random
walk model, whether correlated or not, could not account for the persistence of the
turning speed in our fish and would be inadequate. Data rather suggest a process based
on a correlated turning speed [1,2] with constant swimming speed. Following the
terminology of the persistent random walker (PRW) which denotes the random walk
with an autocorrelation of the heading, we shall hereafter call the PTW this new kind
of random walk with an autocorrelation of the turning speed. In its simplest form, this
model states:

Vi = V (constant swimming speed) (6)

Wi = aWi−1 + bi (7)

where bi is a random gaussian variable of mean 0 and variance s2, and a the one-step
correlation coefficient of Wi .
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Fig. 3 Evolution of the intrinsic coordinates S(t) (top) and the autocorrelation function of the turning
speeds Wi (bottom, both graphs in the same order as Fig. 1). The linear slopes of S(t) indicate a constant
swimming speed and the autocorrelation of the turning speed is significant over several seconds

Equation 7 is an auto-regressive process of order 1 (AR(1) in the statistics litera-
ture). Its parameters a and s can be estimated from a time series (N points sampled
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every ∆t) by the standard equations

â =
∑N−1

i Wi Wi+1
∑N−1

i Wi
(8)

̂s2 = 1

N

N−1
∑

i

(Wi+1 − âWi )
2 . (9)

For a continuous signal such as a moving fish, a and s depend on the discretization
time step ∆t , but this dependency can be resolved by computing their continuous-time
equivalents α and σ :

α = − log(a)

∆t
(10)

σ 2 = s2 2α

1 − e−2α∆t
. (11)

α expresses the inverse of the autocorrelation time τ (that is τ = 1/α) and a = e−∆t/τ .
Since W (t) is a continuous-time process, (7) ought to be understood as the discretized
solution over [(i − 1)∆t, . . . , i∆t] of the stochastic differential equation (sde):

dW (t) = − 1

τ
W (t)dt + σd B(t) (12)

with B(t) representing a Brownian process (white noise). This is known in statistical
physics as the Ornstein–Uhlenbeck (OU) process [59] and as the Vasicek model in
the financial economics literature [7]. In the stationary regime, this equation leads to
a Gaussian random process of the turning speed with zero mean, variance τσ 2/2 and
an exponentially decaying autocorrelation function with decay rate α.

3.2 Parameter estimation

In order to estimate the parameter values of this spontaneous moving behavior from
the fish trajectories in Fig. 1 we had to take the confining effect of the wall into account.
Taken a constant swimming speed for granted, this effect can only operate on the turn-
ing speed, acting as an external field which skews the turning speeds towards repulsive
moves (for further details see next section). This might have biased the estimates of
the autocorrelation time lag. Hence, we restricted this estimation by using only posi-
tions farther than 1 m from the wall (Fig. 4) and censored, i.e. treated as unknown
values, the trajectories when the fish was outside the innermost 1 m wide disk. Those
estimates are reported for each fish on Fig. 5 (bullets, •). They were rather homoge-
neous across the fish, except for the individuals 1 and 4 that were identified above as
exhibiting a strong attraction towards the wall with a rhythmic pattern to and from
the wall (Fig. 1). To estimate the confidence interval of the parameters, we produced

123



J. Gautrais et al.

Dist (m)

ω
 (

ra
d.

s−1
)

−2

0

2

4

6

0.0 0.5 1.0 1.5 2.0

−2

0

2

4

6

0.0 0.5 1.0 1.5 2.0

−2

0

2

4

6

0.0 0.5 1.0 1.5 2.0

Fig. 4 Effect of the wall on the turning speed W (t) (same order as Fig. 1). The sign of ̂Wi was corrected
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repeated simulated series of W using (7) with a common set of parameters (τ � = 0.6 s
and σ� = 1.5 rad/s0.5, same time step ∆t), and applied to each fish the same cen-
soring filter as to the original data. We then computed the corresponding mean and
confidence interval at the 95% level (percentile method, estimated from 100,000 sim-
ulations each). These confidence intervals show that all fish have a τ -value that is not
significantly different from a common autocorrelation time around τ �. As expected,
the outlier fish 1 and 4 depart clearly from the others (and their confidence intervals
are much larger because of a lack of data in the inner 1-m disk). The individual vari-
ances σ 2 seemed more contrasted and were significantly less homogeneous than the
correlation times. However, it is unlikely that these slight deviations from σ� would
actually raise significant differences at the level of the trajectories.

4 Properties of the spontaneous model

4.1 Macroscopic prediction

Degond and Motsch [20] have analysed the large time scale behaviour of a similar
model (with an autocorrelation of the curvature instead of the turning speed). They
have shown by a space–time rescaling technique that their model leads to a diffusion
process at the macroscopic scale. Since our fish swim at constant speed, an autocorre-
lation of the curvature is equivalent to an autocorrelation of the turning speed, so their
conclusion holds also for the PTW model and the mean square displacement scales
linearly with time at large scale:

Var
[−−→
x(t)

]

t→+∞−−−−→ 2Dt (13)

where
−−→
x(t) denotes the vector from the starting point to the position at time t . The

diffusion coefficient D indicates how fast the fish spreads out from its initial position
across the 2D-space.

Figure 6 reports the dependence of the associated macroscopic diffusion coefficient
D on the swimming speed V and the autocorrelation time of the turning speed τ . An
analytical derivation of this dependance is under study. In contrast to the macroscopic
version of the random walk, the diffusion coefficient in the PTW model is not pro-
portional to the swimming speed, but rather increases non linearly as the swimming
speed increases. For a given speed V , an increase of the autocorrelation time of the
turning speed τ yields a lower diffusion coefficient. This happens because the fish is
more often trapped in a high value of turning speed and for a longer time, so it turns
around more locally.

5 Inclusion of wall avoidance

The kinematic model presented above only applies to fish behavior in unconstrained
open water. As an example of how additional components can be integrated into this
model and quantified from data we added the wall avoidance behavior. Focusing on
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Fig. 6 Diffusion coefficient D for the PTW model as a function of the swimming speed V , and for different

values of the autocorrelation time τ , but keeping the variance τσ�2

2 of W constant (filled downward triangle
τ = τ�/4; open downward triangle τ = τ�/2; bullet τ = τ� = 0.6 s; open upward triangle τ = 2τ�; filled
upward triangle τ = 4τ�). Each value was estimated by the Monte-Carlo method, with 10,000 replicates of
individual trajectories simulated with ∆t = 0.01 s over 1,200 s and with random initial conditions (heading
and turning speed). D was estimated by linear regression from the mean square displacement restricted to
the time interval [600, . . . , 1,200] s in order to avoid the ballistic part of the curve. Bars denote the 0.95
confidence interval for the case bullet τ = τ�

the fastest fish (fish 9) we found that the wall had a salient effect only when the fish
was close to and heading towards the wall. We consequently reconstructed the effect
of wall repulsion as a function of the distance Dc before collision with the wall (if
heading were not changed), i.e. the distance between the fish and the intersection of
the heading line with the wall.

We assumed that the repulsive effect of the wall made the fish tend towards a turn-
ing speed F(Dc) which bends its trajectory away from the wall. In order to keep the
model independent of the time step, we adopted the sde formalism of Eq. (12) and
introduced the new term F(Dc(t)) as

dW (t) = − 1

τ
(W (t) − F(Dc(t))) dt + σd B(t) (14)

If the wall effect were constant over time (e.g. F(Dc(t)) = F�) process (14) should
be understood as a relaxation of W (t) towards the equilibrium value F�. Of course,
since the fish position and its heading change over time, so does F(Dc(t)).
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Over a small time step ∆t , however, we can assume that F(Dc(t)) � F(Di ) (with
t = (i − 1)∆t) is constant, and the discrete version of (14) is given in [7] by

Wi+1 = a Wi + c F(Di ) + bi (15)

where c = (1 − e−∆t/τ ), and a and bi are defined as in (7). Given a from the sponta-
neous model we reconstructed F(Dc) based on

̂F(Di ) = Wi+1 − a Wi

c
(16)

plotted against Di .
Finally, since the repulsive effect of the wall has to induce a change of the turning

speed in the correct direction, we corrected the sign of ̂F(Di ) such that positive values
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Fig. 7 Integration of the wall repulsive effect in the model for fish 9. (a) Wall effect on the angular
speed. Dc: distance to collision. A positive F denotes repulsion. Dotted line loess estimate of F(Dc).
Thick line parametric approximation 3 exp−1.5Dc , (b) Example of a typical simulated trajectory in the tank
(equation 15, with τ = 0.6 s, σ = 1.5 rad.s−1/2, �t = 0.01 s), (c) Mean Squared Displacement of model
and experimental data (fish 9). Thin line experimental mean; dotted lines experimental 95% confidence
interval; thick line model prediction estimated by Monte Carlo simulations (parameters as in b).

123



J. Gautrais et al.

corresponded to a fish steering away from the wall (Fig. 7a). Following [9], we used
a nonparametric locally weighted regression procedure (loess, [17]) to estimate the
decay of this wall effect as the distance to collision increases. This decay could be
adequately modeled by the parametric function F(Dc) � 3 e−1.5Dc (Fig. 7a).

We finally simulated the complete model, using the discrete version (15), and
checked the simulated trajectories against the experimental one. A typical example
is shown in Fig. 7b. Note in particular that the wall avoidance results from the time
integration of the wall effect quantified above, with no ad-hoc correction in case of
collisions (which do not happen with sufficiently small ∆t). As a final test of the rel-
evance of this model, we compared the experimental and the expected mean squared
displacement (MSD). Both agreed perfectly well up to 6 seconds (i.e. 3.6 m, which is
of the same order of magnitude as the tank width of 4 m) despite the fact that the sta-
tistical quantifications of the model were done on the turning speed fluctuations (third
derivative of the position) whereas this test is performed directly with the integrated
time series of the fish positions.

6 Discussion

6.1 Why a new kind of random walk model is needed?

Random walks and the associated diffusion models were originally developed in biol-
ogy to describe the movements of single cells [44,45]. Later they were adopted by
ecologists to model the displacement of animals [35,56], and particular attention was
paid to the underlying behavioral mechanisms and how they are modulated by envi-
ronmental conditions. Inspired from the model of gas particles that travel straight
ahead between collisions, random walk models break the path into a series of consec-
utive straight moves, separated by random reorientation behavior. The biological rules
determine, for each move, a direction, a duration and a length that can depend on the
preceding move (in the case of the correlated random walk) but also on the animal’s
state and goals and the environmental conditions (including the presence of conspecif-
ics). Most often, these discrete random walk models have equivalent continuous time
formulations, either at the population level (macro-scale diffusion models) or at the
individual level (stochastic differential equations and Langevin theory of Brownian
motion [16]). They are especially useful when the focus is put on the interplay between
the behavior and the environment at large time and space scales (e.g. how ovipositing
butterflies respond to changes in the dispersion of their food plants [34]). More gener-
ally, simple random walks have proved to be appropriate to quantify the movement of
animals or cells which exhibit clear bouts of straight moves separated by reorientation
behaviour (e.g. in ants [13,14], cockroaches [32] or Escherichia coli [2]).

Our fish in the tank did not exhibit such clear bouts of straight moves nor clear
reorientation behaviour. They are rather characterized by smooth variations of their
heading. Of course, it would still have been possible to approximate their trajectory
as a series of straight segments at some fine scale. This would have required a subtle
choice where to break up the path, with a trade-off between inappropriate lumping of
small displacements and excessive splitting of long ones. Excessive splitting yields
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series of headings that are still highly autocorrelated which complicates statistical
factor analyses and the translation of individual movements into population dispersal
models [34,57]. To avoid this, Tourtellot advocates for instance to sub-sample tra-
jectories of cockroaches in order to enhance the discrimination between “gait noise”
(lateral, side-to-side wobble) and course changes [55]. Accordingly, Turchin suggests
to resample the path at a lower rate until the autocorrelation structure disappears
[6,56,58]. Such a procedure applied to our fish has led to an overly rough approxima-
tion of the true path, impeding accurate predictions of the fish trajectory at the short
time scale. At finer scales, not only was the heading highly autocorrelated from one
segment to the next (one-step correlation as in the correlated random walk model), but
the heading change itself was autocorrelated, because the circular-shaped trajectories
imply sustained changes of the heading towards the same clock-wise sign. Modelling
such a moving behaviour with straight moves separated by an ad hoc tortuous reori-
entation behaviour (e.g. a Markov process of higher order as in [27]) would have been
unduly complicated.

We adopted a more parsimonious approach in which the random fluctuations act
directly on the turning speed (the derivative of the heading) rather than on the heading
itself. This led us to the PTW model. Using this model, there were still two alter-
natives to express the random process at the individual scale, either as a discrete
process or as a continuous process. We followed the two approaches and quantified
the associated model parameters from experimental data. In the discrete alternative,
the trajectory is split into a series of circular segments of random length (constant
turning speed over a random time length), separated by a renewal process of the turn-
ing speed drawn from a Gaussian distribution. The associated quantification proce-
dure yielded convincing results, but it involved the prior validation of methodological
prerequisites, in particular the detailed development of the proper algorithm of path
segmentation. It will be the subject of a future report. In the continuous alternative
that is reported in the present paper, the fish path is considered as a curvilinear track
whose parameters are continuously updated by the animal. The renewal process of
the turning speed leads to a description by stochastic differential equations [10,48]
where the turning speed follows an OU process. We used the discrete-time sampling
of the path to estimate its parameters. This formalism allows predictions at any time
scale.

Beyond the formalism, the experimental data have clearly shown that the classical
random walk models (adjustments of headings) are inappropriate for the spontaneous
movement of the fish species under study in which the steering process is based on
adjustments of the turning speed. Obviously, this result has to be confirmed for other
fish species and arguably in other experimental set-ups (e.g. varying the tank diam-
eter). It is, however, a highly plausible model for many fishes that travel at constant
swimming speed [23,54]. The model used to quantify this behaviour may also be con-
sidered to analyze movements in other animals that exhibit some circularity in their
displacement (e.g. the desert isopod searching for its burrow [28,29] or the carabid bee-
tles [51]) and to derive their properties at the macroscopic scale. Schimansky-Geier
et al. [37,52] showed for instance that the intensity of research associated with a
noisy constant turning speed is higher than possible with a piecewise linear random
walk.
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6.2 Towards the quantification of fish interactions

The principal aim of this study was to establish a biologically grounded model of the
spontaneous displacement of a fish against which the interactions with neighbors can
be quantified. Since the null-model is directly based on the turning speed it is reason-
able to address interactions also from this point of view. The presence of a neighbor
would simply make a fish turn more or less quickly, either to avoid, to align with or
to approach it. In this case the interactions should not be modeled as attraction or
repulsion forces (in the Newtonian sense, which would affect the swimming and the
turning speeds), but rather as attraction or repulsion torques (which would affect the
turning speed only).

To illustrate this idea and as a first step towards an ad-hoc methodology to quan-
tify fish interactions we addressed the interaction of isolated fish with the tank wall.
This takes the form of an additional term in the stochastic differential equation gov-
erning the turning speed process (W (t)). The repulsive effect of the wall has been
formally described as an OU process relaxing W (t) towards F(Dc(t)) (which repre-
sents a mean turning speed away from the wall, Dc(t) being the distance before wall
collision if the heading were not changed) rather than towards 0 (which represents
a mean turning speed that is independent of the wall as in the open space case). For
an animal interacting with its environment, steering away might be the most natural
mean to avoid obstacles since it can work without altering swimming speed (accel-
erate and decelerate might be more costly than just steering away). The estimated
intensity of F(Dc(t)) displayed an exponential decay as the distance to collision with
the wall increased. The simulations of the model showed that its integration over time
is sufficient to avoid collisions in the normal regime. Some fish (1, 4, 5) failed to be
correctly modeled within this simple framework since their trajectory clearly showed
a tendency to be not just repulsed but also attracted by the wall (which is sometimes
labeled thigmotactism [32]). This attractive effect may be due to the stress induced by
isolation or represent a natural behavior in the fishes’ usual habitat in coral reefs. We
did not further investigate this special case since we were not interested to model the
effect of the wall per se, but simply used it to illustrate that interactions can actually
be taken into account by a simple additional term in the W (t) process.

The focus of the present paper on changing rates of rotation evokes the use of gyro-
scopic forces in control theory that were recently applied in the context of bio-inspired
swarm robotics [4,5,25,31,33,38,40,41,50]. Especially the theoretical studies of sys-
tems with constrained speed capabilities (nonholonomic mobiles) [8,21,39,42] or the
studies that explore the minimal design that allow such coordination [15,30,43] may
prove interesting for further insights into the modeling of fish interactions.

7 Conclusion

We showed that the fish K. mugil follows in the experimental tank a particular kind of
random walk: the PTW. Even if this result has to be confirmed for other species and
biological contexts, our results suggest that the standard null-models (random walks)
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that are used in interaction studies and in models of collective fish movements might
be less representative than suggested by their predominance in the literature.

References

1. Alt, W.: Modelling of motility in biological systems. In: McKenna J., Temam R. (eds.) ICIAM’87
Proceedings of the First International Conference on Industrial and Applied Mathematics, pp. 15–30.
Society for Industrial and Applied Mathematics, Philadelphia (1988)

2. Alt, W.: Correlation analysis of two-dimensional locomotion paths. In: Alt W., Hoffmann G. (eds.)
Biological Motion. Lecture Notes in Biomathematics, vol. 89. Springer, Heidelberg (1990)

3. Aoki, I.: An analysis of the schooling behavior of fish: internal organization and communication pro-
cess. Bull. Ocean Res. Inst. Univ. Tokyo 12, 1–65 (1980)

4. Bai, H., Arcaka, M., Wen, J.T.: Adaptive design for reference velocity recovery in motion coordination.
Syst. Control Lett. (2008, in press) doi:10.1016/j.sysconle.2007.07.003

5. Balc, T., Arkin, R.: Behavior-based formation control for multi-robot teams. IEEE Trans. Robot.
Autom. 14, 926–939 (1998)

6. Benhamou, S.: How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or
fractal dimension? J. Theor. Biol. 229, 209–220 (2004)

7. Bianchi, C., Cleur, E.M.: Indirect estimation of stochastic differential equation models: some compu-
tational experiments. Comput. Econ. 9, 257–274 (1996)

8. Borenstein, J., Koren, Y.: The vector field histogram—fast obstacle avoidance for mobile robots. IEEE
Trans. Robot. Autom. 7, 278–288 (1991)

9. Brillinger, D.R.: A particle migrating randomly on a sphere. J. Theor. Probab. 10, 429–443 (1997)
10. Brillinger, D.R., Preisler, H.K., Ager, A.A., Kie, J.G., Stewart, B.S.: Employing stochastic differential

equations to model wildlife motion. Bull. Braz. Math. Soc. New Ser 33, 385–408 (2002)
11. Caillol, J-M.: Random walks on hyperspheres of arbitrary dimensions. J. Phys. A Math. Gen. 37, 3077–

3083 (2004)
12. Camazine, S., Deneubourg, J-L., Franks, N., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization

in Biological Systems. Princeton University Press, Princeton (2001)
13. Casellas, E., Gautrais, J., Fournier, R., Blanco, S., Combe, M., Fourcassie, V., Theraulaz, G., Jost, C.:

From individual to collective displacements in heterogeneous environments. J. Theor. Biol. 250,
424–434 (2007)

14. Challet, M., Jost, C., Grimal, A., Lluc, J., Theraulaz, G.: How temperature influences displacements
and corpse aggregation behaviors in the ant Messor Sancta. Ins. Soc. 52, 309–315 (2005)

15. Grégoire, G., Chaté, H., Tu, Y.: Moving and staying together without a leader. Phys. D 181, 157–170
(2003)

16. Chowdhury, D.: 100 years of Einstein’s theory of Brownian motion: from pollen grains to protein
trains. Resonance (Indian Academy of Sciences) 10, 63. arXiv:cond-mat/0504610 (2005)

17. Cleveland, W.S., Grosse, E., Shyu, W.M.: Local regression models. In: Chambers, J., Hastie, T.J. (eds.)
Statistical Models in S, pp. 309–376. Pacific Grove, Wadsworth (1992)

18. Couzin, I.D., Krause, J.K., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial
sorting in animal groups. J. Theor. Biol 218, 1–11 (2002)

19. Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and decision making in animal
groups on the move. Nature 433, 513–516 (2005)

20. Degond, P., Motsch, S.: Large scale dynamics of the persistent turning walker model of fish behavior.
J. Stat. Phys 131, 989–1021 (2008)

21. Do, K.D., Jiang, Z.P., Pan, J.: Underactuated ship global tracking under relaxed conditions. IEEE Trans.
Autom. Control 47, 1529–1536 (2002)

22. Ferrando, S.E., Kolasa, L.A., Kovacevic, N.: Wave++: a C++ library of signal analysis tools (2007)
http://www.scs.ryerson.ca/~lkolasa/CppWavelets.html

23. Fish, F.E.: Performance constraints on the maneuverability of flexible and rigid biological systems.
In: Proceedings of the Eleventh International Symposium on Unmanned Untethered Submersible Tech-
nology, pp. 394–406. Autonomous Undersea Systems Institute, Durham (1999)

24. Gautrais, J., Jost, C., Theraulaz, G.: Key behavioural factors in a self-organised fish school model.
Annales Zoologici Fennici (2008, in press)

25. Gazi, V., Passino, K.M.: Stability analysis of swarms. IEEE Trans. Autom. Control 48, 692–697 (2003)

123

http://dx.doi.org/10.1016/j.sysconle.2007.07.003
http://www.scs.ryerson.ca/~lkolasa/CppWavelets.html


J. Gautrais et al.

26. Grünbaum, D., Viscido, S., Parrish, J.K.: Extracting interactive control algorithms from group dynamics
of schooling fish. In: Kumar, V., Leonard, N.E., Morse, A.S. (eds.) Lecture Notes in Control and Infor-
mation Sciences, pp. 103–117. Springer, Berlin (2004)

27. Hapca, S., Crawford, J.W., MacMillan, K., Wilson, M.J., Young, I.M.: Modelling nematode movement
using time-fractional dynamics. J. Theor. Biol. 248, 212–224 (2007)

28. Hoffman, G.: The random elements in the systematic search behavior of the desert isopod Hemilepistus
reaumuri. Behav. Ecol. Sociobiol. 13, 81–92 (1983)

29. Hoffman, G.: The search behavior of the desert isopod Hemilepistus reaumuri as compared with a
systematic search. Behav. Ecol. Sociobiol. 13, 93–106 (1983)

30. Huepe, C., Aldana, M.: New tools for characterizing swarming systems: a comparison of minimal
models. Phys. A 387, 2809–2822 (2008)

31. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest
neighbor rules. IEEE Trans. Autom. Control 988–1001 (2003)

32. Jeanson, R., Blanco, S., Fournier, R., Deneubourg, J-L., Fourcassié, V., Theraulaz, G.: A model of
animal movements in a bounded space. J. Theor. Biol. 225, 443–451 (2003)

33. Justh, E.W., Krishnaprasad, P.S.: Equilibria and steering laws for planar formations. Syst. Control
Lett. 52, 25–38 (2004)

34. Kareiva, P.M., Shigesada, N.: Analyzing insect movement as a correlated random walk. Oecologia
56, 234–238 (1983)

35. Kareiva, P.: Habitat fragmentation and the stability of predator–prey interactions. Nature 326, 388–390
(1987)

36. Keenleyside, M.H.A.: Some aspects of the schooling behaviour of fish. Behaviour 8, 183–248 (1955)
37. Komin, N., Erdmann, U., Schimansky-Geier, L.: Random walk theory applied to daphnia motion. Fluct.

Noise Lett. 4, 151–159 (2004)
38. Latombe, J.C.: Motion planning: a journey of robots, molecules, digital actors, and other artifacts. Int.

J. Robot. Res. 18, 1119–1128 (1999)
39. Laumond, J.P., Risler, J.J.: Nonholonomic systems: Controllability and complexity. Theor. Comput.

Sci. 157, 101–114 (1996)
40. Lin, Z., Broucke, M.E., Francis, B.A.: Local control strategies for groups of mobile autonomous

agents. IEEE Trans. Autom. Control 49, 622–629 (2004)
41. Marshall, J.A., Broucke, M.E., Francis, B.A.: Formations of vehicles in cyclic pursuit. IEEE Trans.

Autom. Control 49, 1963–1974 (2004)
42. Murray, R.M., Sastry, S.S.: Nonholonomic motion planning: steering using sinusoids. IEEE Trans.

Autom. Control 38, 700–716 (1993)
43. Nagy, M., Darukab, I., Vicsek, T.: New aspects of the continuous phase transition in the scalar noise

model (SNM) of collective motion. Phys. A 373, 445–454 (2007)
44. Patlak, C.S.: Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338 (1953)
45. Patlak, C.S.: A mathematical contribution to the study of orientation of organisms. Bull. Math. Bio-

phys. 15, 431–476 (1953)
46. Parrish, J.K., Turchin, P.: Individual decisions, traffic rules, and emergent pattern in schooling fish.

In: Parrish J.K., Hammer W.M. (eds.) Animal Groups in Three Dimensions, pp. 126–142. Cambridge
University Press, London (1997)

47. Perrin, F.: Etude mathématique du mouvement brownien de rotation. Annales Scientifiques de
l’ENS 45, 1–51 (1928)

48. Preisler, H.K., Brillinger, D.R., Ager, A.A., Kie, J.G., Akers, R.P.: Stochastic differential equations:
a tool for studying animal movement. In: Proceedings of International Union Forest Research Organi-
zation (2001)

49. Radakov, D.: Schooling in the Ecology of Fish. Wiley, New York (1973)
50. Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioural model. Comput. Graph. 21, 25–

34 (1987)
51. Scharstein, H.: Paths of carabid beetles walking in the absence of orienting stimuli and the time

structure of their motor output. In: Alt, W., Hoffmann, G. (eds.) Biological Motion. Lecture Notes in
Biomathematics, vol. 89. Springer, Heidelberg (1990)

52. Schimansky-Geier, L., Erdmann, U., Komin, N.: Advantages of hopping on a zig–zag course. Phys.
A 351, 51–59 (2005)

53. Soria, M., Freon, P., Chabanet, P.: Schooling properties of an obligate and a facultative fish species.
J. Fish Biol. 71, 1257–1269 (2007)

123



Fish movement as PTW

54. Sfakiotakis, M., Lane, D.M., Davies, J.B.C.: Review of fish swimming modes for aquatic locomo-
tion. IEEE J. Ocean. Eng. 24, 237–252 (1999)

55. Tourtellot, M.K., Collins, R.D., Bell, W.J.: The problem of movelength and turn definition in analysis
of orientation data. J. Theor. Biol 150, 287–297 (1991)

56. Turchin, P., Odendaal, F.J., Rausher, M.D.: Quantifying insect movement in the field. Environ. Ento-
mol. 20, 955–963 (1991)

57. Turchin, P.: Translating foraging movements in heterogeneous environments into the spatial distribution
of foragers. Ecology 72, 1253–1256 (1991)

58. Turchin, P.: Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution
in Animals and Plants. Sinauer Associates, Sunderland (1998)

59. Uhlenbeck, G.E., Ornstein, L.S.: On the theory of Brownian motion. Phys. Rev. 36, 823–841 (1930)
60. Umeda, T., Inouye, K.: Possible role of contact following in the generation of coherent motion of

Dictyostelium cells. J. Theor. Biol 291, 301–308 (2002)
61. Viscido, S.V., Parrish, J.K., Grünbaum, D.: Factors influencing the structure and maintenance of fish

schools. Ecol. Modell. 206, 153–165 (2007)

123


	Analyzing fish movement as a persistent turning walker
	Abstract
	1 Introduction
	2 Data collection
	3 Kinematic model
	3.1 Rationale for the model
	3.2 Parameter estimation

	4  Properties of the spontaneous model
	4.1 Macroscopic prediction

	5 Inclusion of wall avoidance
	6 Discussion
	6.1 Why a new kind of random walk model is needed?
	6.2 Towards the quantification of fish interactions

	7 Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


