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Abstract Fitting nonlinear models to time-series is a tech-
nique of increasing importance in population ecology. In
this article, we apply it to assess the importance of predator
dependence in the predation process by comparing two
alternative models of equal complexity (one with and one
without predator dependence) to predator-prey time-
series. Stochasticities in such data come from both observa-
tion error and process error. We consider how these errors
must be taken into account in the fitting process, and we
develop eight different model selection criteria. Applying
these criteria to laboratory data on simple protozoan and
arthropod predator—prey systems shows that little predator
dependence is present, with one interesting exception. Field
data are more ambiguous (either selection depends on the
particular criterion or no significant differences can be de-
tected), and we show that both models fit reasonably well.
We conclude that, within our modeling framework, preda-
tor dependence is in general insignificant in simple systems
in homogeneous environments. Relatively complex systems
show significant predator dependence more often than
simple ones but the data are also often inconclusive. The
analysis of such systems should rely on several models to
detect predictions that are sensitive to predator dependence
and to direct further research if necessary.
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Introduction

The relation between predator—prey theory and real popu-
lation time-series has been the subject of many studies since
the early publication of the Lotka—Volterra equations or
the Nicholson-Bailey model. The studied systems range
from protozoan organisms through arthropod systems and
microtine systems to the whole plankton community of
lakes (Gause 1935; Huffaker 1958; Turchin and Ellner 2000;
Scheffer 1998). Traditionally, model validation is done by
comparing the data with the model either qualitatively
(stable or cyclic dynamic behavior, length of cycles, ampli-
tudes, etc.) or quantitatively (estimating parameters in the
field, and calibrating the model “by hand” to obtain a good
fit to the data). Recently, computer power combined with
powerful global optimization algorithms has enabled re-
searchers to fit rather complex (mechanistic) nonlinear
models to time-series data. One application of these fitting
techniques is model selection (Morrison et al. 1987,
Carpenter et al. 1994; Harrison 1995; Morris 1997), either to
detect a best-fitting model or to show that several models
can explain the data. Model selection in predator—prey sys-
tems is of particular interest because the functional form of
the model can have implications in population management
and conservation biology (Yodzis 1994), on stability and
persistence of populations (Myerscough et al. 1996), on
biological control (Wood and Thomas 1999), or on the spa-
tial distribution of predators (van der Meer and Ens 1997).

In this article, we use model fitting to address the ques-
tion of detecting predator dependence in the functional
response (which links the prey with the predator dynamics,
Solomon 1949). Although predator—-prey models with a
predator-independent functional response (originally
termed prey-dependent by Arditi and Ginzburg 1989) rest
essentially on top-down mechanisms (Oksanen et al. 1981),
predator-dependent models can reflect both bottom-up and
top-down relations (DeAngelis et al. 1975; Arditi and
Ginzburg 1989; Poggiale et al. 1998; Ponsard et al. 2000).
The two views have been tested mostly by comparing equi-
librium population abundances along a gradient of enrich-
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Fig. 1. Fitting a differential equation to a time-series (artificial data for
illustrative purposes). a All error is assumed to be measurement error
and the whole trajectory is fitted at once (observation-error-fit, OEF).
b All error is assumed to be process error and each data point serves as
an initial condition to predict the data point s (= 2 in this graph) steps
ahead (process-error-fit, PEF)

ment or by reanalyzing data of published functional re-
sponse experiments (see next section for details). Fitting
models to time-series of populations that are not in an
equilibrium and applying goodness-of-fit as a criterion
approaches the problem from a dynamic point of view.

The method by which models should be fitted to time-
series depends on the source of errors in the data (Solow
1995; Hilborn and Mangel 1997). If the underlying process
is stochastic and there is no sampling error (no observation
error), then predictions are only possible for a limited time
into the future, e.g., to the next data point (one-step-ahead
fitting). On the other hand, if the underlying process is
deterministic and there is observation error only, then the
population trajectory (as determined by the model, its pa-
rameters, and the initial population size) can be fitted over
the whole length of the time-series (see Fig. 1 and Appendix
A for notations). We adopted Pascual and Kareiva’s (1996)
terminology for these two types of fitting, calling the first
process-error-fit (PEF) and the second observation-error-fit
(OEF).

Most ecological time-series contain both types of error,
and methods exist to account for them simultaneously
(Reilly and Patino-Leal 1981; Schnute and Richards 1995;
Pascual and Kareiva 1996; Bjgrnstad et al. 1999). However,
these methods are numerically very complicated and time-
consuming. Furthermore, they have mostly been used with
discrete models; adapting them to continuous models (as
used in this article) would further increase the computing
time. Thus, the “practical decision usually involves choosing
between the two fitting procedures” and “the two assump-

tions are expected to provide two extremes in a range of
likely parameter estimates” (quoted from Pascual and
Kareiva 1996, who provide an extensive discussion of statis-
tical properties of the two types of fitting).

A PEF approach to detect predator dependence was
used by Carpenter et al. (1994) with 7 years of freshwater
plankton data in two North American lakes. These authors
fitted alternative discrete predator—prey models with
predator-independent or predator-dependent functional
responses, assuming the parameters to be the same over the
whole 7 years. The aim of their paper was mostly method-
ological, and the actual real data analysis yielded few inter-
pretable results. One problem in their study is that plankton
dynamics are more correctly modeled by a continuous sys-
tem (large populations and overlapping generations) and
taking the time between measurements as the prediction
time step is an arbitrary choice. Furthermore, parameters
might change from one year to the next. A second study
(Harrison 1995) used an OEF approach and compared
several continuous predator—prey models (differential
equations) by fitting them to the protozoan data of
Luckinbill (1973). Working with laboratory data, the author
assumed stochastic processes to be negligible compared to
observation error. A major problem in this study is that
Harrison’s selection criterion does not take model complex-
ity into account. Unsurprisingly, the model with the largest
number of parameters gave the best fit.

We reanalyze here the data of both studies (Carpenter et
al. 1994; Harrison 1995), plus other time-series found in the
literature, to address the biological problem of detecting
whether the importance of predator dependence in the
functional response justifies its inclusion in predator—prey
models. This analysis will be done by fitting two continuous
models (in contrast to the discrete analysis of Carpenter et
al. 1994) with a predator-independent and a predator-
dependent functional response. Both models have the
same number of parameters (avoiding the problems of the
Harrison 1995 analysis) and can display the same range of
qualitative dynamic behaviors. Goodness-of-fit (based on a
least-squares approach) and a measure of prediction error
are used as criteria for model selection. In the words of
Linhard and Zucchini (1986), we base model selection on
measures of discrepancy between the models and the data.
The analyzed time-series range from simple protozoan
batch cultures through spatially more complex laboratory
arthropod systems to complex lake plankton systems (all
have the characteristics of a continuous system, i.e., large
populations and overlapping generations). Because such
data contain both observation and process errors, we apply
systematically both a PEF and an OEF (selection of the
same model with both types of fits was shown in a simula-
tion analysis to give a more reliable result, Jost and Arditi
2000). This reliability is further extended by using two
goodness-of-fit criteria (standard least-squares and a robust
criterion) that reflect the uncertainty about the precise dis-
tribution of the errors. Bootstrapping is used to obtain a
criterion based on the predictive power and to test whether
the differences found are significant.

The time-series used are characterized by small size [10-
50 data triplets (time, prey, predator)] and by rather large



measurement errors with coefficients of variation (CV) up
to 50%. For these reasons, a good fit of a given model does
not necessarily mean that it describes the biological pro-
cesses correctly. This difficulty in model selection based on
goodness-of-fit to noisy data has been known since Feller’s
(1939) early work: he fitted several alternative sigmoid
functions successfully to data that were considered at the
time to be the “proof” that Verhulst’s model for population
growth had the character of a physical law. This example
illustrates that “multiple process configurations can pro-
duce the same pattern” (Cale et al. 1989). Following May’s
(1989) advice, these serious problems of model fitting can
be addressed by “generating pseudo-data for imaginary
worlds whose rules are known, and then testing conven-
tional methods for their efficiency in revealing these known
rules.” We tested the distinguishability of the two models
under consideration in a simulation study (Jost and Arditi
2000). Using randomly created predator—prey time-series
that have similar characteristics as the data analyzed in this
study (in particular, containing both observation and pro-
cess errors), this study showed that the tested models (see
next section) can be identified reliably by goodness-of-fit
(with the methods detailed next) from data with such char-
acteristics. Furthermore, the highest reliability can be
achieved if both PEF and OEF select the same model.

Alternative models

Based on the principles of mass conservation (Rosenzweig
and MacArthur 1963; Ginzburg 1998) and decomposition of
the dynamics of a population into birth and death processes,
we write the canonical form of a predator—prey model as

”;—Ztv = f(N)N — g(N.P)P

D
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where N and P are prey and predator abundances, respec-
tively, fis the prey growth rate in the absence of a predator,
u is the predator mortality rate in the absence of prey, and
e is the conversion efficiency. Predation is represented by
the functional response g(N, P), which in general depends
on both prey and predator abundances.

To fit model 1 to data, we must formulate f and g explic-
itly. For the recruitment function f, we use a standard logis-
tic growth, f(N) = r(1 — N/K), with intrinsic growth rate r
and carrying capacity K. Many different expressions for the
functional response can be found in the literature (see May
1976 and Michalski et al. 1997 for inventories). We choose a
standard Holling type II model for the predator-indepen-
dent (= prey-dependent) case and a ratio-dependent model
(Arditi and Ginzburg 1989) for the predator-dependent
case:

_aN
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Prey dependence, g(N,P) = g(N)

2
Ratio dependence, g(N,P) = g(N/P) =
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where a is the searching efficiency, /4 is the handling time,
and a is an overall searching efficiency for all predators. The
dynamics of the prey-dependent model are either stable
coexistence, unstable coexistence (limit cycles), or extinc-
tion of the predator (Hastings 1997, Chapter 8). In addition
to these dynamics, the ratio-dependent model also offers
extinction of both prey and predator (Jost et al. 1999;
Berezovskaya et al. 2001). These dynamics are also ob-
served in the time-series with which we shall compare the
models. The Holling type II model was chosen because it is
the most widely used predator-independent functional
response. The ratio-dependent model is a predator-depen-
dent functional response that has the same number of pa-
rameters and offers, in the given predator—prey context,
similar dynamics as the Holling type II model. Alternative
predator-dependent models with comparable dynamics
(Beddington 1975; DeAngelis et al. 1975; Hassell and
Varley 1969) have more parameters.

An alternative to model selection based on discrepancies
is hypothesis testing (Linhard and Zucchini 1986). For ex-
ample, one might use the versatile Hassell-Varley—Holling
functional response (Sutherland 1983; Arditi and Akgakaya
1990):

_ _aNP"
8(N-P) = 13N

and estimate the additional parameter m as a quantification
of predator dependence. The biological interest in quantify-
ing predator dependence is obvious. We therefore estimate
this parameter as well, but we refrain from using it for
testing purposes (m = 0 or m = 1) because the bootstrapped
confidence intervals are not very reliable due to overfitting
and algorithmic problems. We also want to concentrate on
models that are of interest to practitioners (who rarely can
allow for more than two parameters in the functional
response).

The controversy around the ratio-dependent model
(Ruxton and Gurney 1992; Arditi et al. 1992; Abrams 1994;
Akgakaya et al. 1995; Abrams and Ginzburg 2000) requires
some additional comments. Ratio-dependent predation was
originally proposed as a simple phenomenological model
that accounts for general empirical patterns in food chains
(Arditi and Ginzburg 1989; Arditi et al. 1991). Most criti-
cisms against ratio dependence revolved around this phe-
nomenological character. Mechanisms leading to ratio
dependence have since then been demonstrated (Poggiale
et al. 1998; Cosner et al. 1999; Arditi et al. 2001). However,
it should be noted that, in highly complex systems such as
lakes, there can be too many important processes at work to
incorporate them all in a mechanistically derived model
(spatial aggregation, defense mechanisms, refuges, etc.). In
such situations, we still consider phenomenological models
to be a reasonable option. Predator dependence is a com-
mon occurrence in natural populations (Arditi and
Akgakaya 1990; see review in Sutherland 1996), and it can
explain the observed positive correlations between con-
secutive trophic level abundances along a gradient of pro-
ductivity (Arditi et al. 1991; Mazumder 1994; McCarthy et
al. 1995; Mazumder and Havens 1998; Ponsard et al. 2000).
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Ratio dependence is just one possible way to include preda-
tor dependence, but it does so in a parsimonious way and
allows for direct comparison with a prey-dependent re-
sponse. A better fit of the ratio-dependent model over the
prey-dependent model (or vice versa) cannot and will not
be interpreted as a proof that this model is correct but only
that it better approximates the actual occurrence of preda-
tor dependence.

Materials and methods
Time-series

Two kinds of time-series data are analyzed: data retrieved
from the published literature and unpublished original data
of phyto- and zooplankton dynamics in Lake Geneva. Only
data with strong dynamics (sustained or damped oscilla-
tions) and allowing reasonable fits with both PEF and OEF
are considered. Because the difference between the two
functional responses that we compare is in the influence of
predator abundance, we request that predator abundance
varies by at least a factor of two over time. Most of these
data were obtained by scanning the graphics in the publica-
tions and extracting the data with the software DATATHIEF
(Macintosh). This process unavoidably introduces some er-
ror, but this error was of minor importance compared to the
final residuals in the fits. The data were usually published
with no indication of the observation error, or it was mea-
sured once and assumed to be stationary (Carpenter et al.
1994; Huffaker 1958) (see Table 1 for a listing of all data
that are analyzed).

The data can be assigned to three categories: (1) proto-
zoa and plankton grown in the laboratory in batch cultures,
(2) mites grown in the laboratory, and (3) plankton mea-
sured directly in freshwater lakes. The batch cultures were
usually grown in small flasks and the medium was renewed

Table 1. The data sets

periodically when counting the individuals. Gause (1935)
used destructive counting, but because this was done on a
small proportion of the culture (1.7%), we have chosen to
neglect this additional mortality. Luckinbill (1973) and
Veilleux (1979) both used nondestructive counting. One
additional data set of Luckinbill was obtained directly from
the author. The marine plankton data of Flynn and
Davidson (1993) are those of static batch cultures without
aeration, stirred every day before sampling. The data sets
flynnlb, flynn2b, and flynn2c were shortened from their
Figs. 1b, 2b, and 2c, respectively, because there was an
obvious change in parameters during the experiment, de-
tectable by an abrupt change in dynamics and described by
the authors as the onset of strong cannibalism among preda-
tors. The data sets consist of the data before the change.
The mites of Gause et al. (1936) were held in open glass
tubes, while Huffaker used more complex setups with prey
patches arranged in two (Huffaker 1958) or three (Huffaker
et al. 1963) dimensions. The data for Paul Lake and
Tuesday Lake (Carpenter et al. 1993) were given directly in
tabulated form within the publication, and some missing
data points were obtained from the authors. Carpenter et al.
(1994) fitted their models to the whole time-series from
1984 to 1990, whereas we treated each year individually to
allow for year-to-year differences in physical conditions.
The data from Lake Geneva (Switzerland and France)
were collected as part of the lake monitoring program of the
International Commission for Protection of Lake Geneva
Against Pollution (CIPEL) and cover the years 1986 to
1993. The sampling methods are described in annual reports
(e.g., CIPEL 1995). A short description can also be found in
Gawler et al. (1988). Phytoplankton were sampled with a
Pelletier bell-shaped integrating sampler from 0 to 10m
water depth. Zooplankton were sampled by vertical tows
from a depth of 50m with coupled nets. Plankton biomass
was calculated from abundance and estimated biovolume.
Phytoplankton 50um or less (in length) and biovolume of

Name of data set Source Prey

Predator Type of data

Protozoa and plankton (batch culture)

gause 1 1 Schizosaccharomyces pombe  Paramecium bursaria Number of individuals
gause 3, —4 1 Saccharomyces exiguus Paramecium aurelia Number of individuals
luckin 1a, —1b, —3a, —4a, —4b, —5 2 Paramecium aurelia Didinium nasutum Number of individuals
veill 8, —10 3 Paramecium aurelia Didinium nasutum Number of individuals
wilh 4.2, —4.4, —5.27, —5.28, —5.29, —5.30 4 Escherichia coli Tetrahymena thermophila  Biovolume
flynn 1b, -1c, -2b, -2¢ 5 Isochrysis galbana Oxyrrhis marina Number of cells
Mites (laboratory)
gauset 2a, —c, —d, —e, —f 6 Aleuroglyphus agilis Cheyletus eruditus Number of individuals
huff 11, —12,..., —18 7 Eotetranychus sexmaculatus  Typhlodromus occidentalis Number of individuals
huff 63—-3, —63—4 8 Eotetranychus sexmaculatus ~ Typhlodromus occidentalis  Number of individuals
Plankton (lakes)
paul 84, =85, ..., —90, tues 84, —85,..., =90 9 Edible phytoplankton Zooplankton Biomass
edPhy 86, —87,..., —93 10 Edible phytoplankton Herbivorous zooplankton  Biomass
totPhy 86, —87,..., =93 10 Total phytoplankton Herbivorous zooplankton = Biomass

Sources are (1) Gause (1935); (2) Luckinbill (1973); (3) Veilleux (1979); (4) Wilhelm (1993); (5) Flynn and Davidson (1993); (6) Gause et al.
(1936), table 2; (7) Huffaker (1958); (8) Huffaker et al. (1963); (9) Carpenter et al. (1993b); (10) CIPEL reports (1986-1993)

Numbers or letters separated by a comma refer to further data sets with the same basic name; e.g., gause 1, -3 refer to data sets gause 1 and gause
3; usually, these numbers refer to the figures or tables within the cited publication, except for plankton data where they refer to the year in which

the data were collected



10*um’ or less were considered edible phytoplankton.
Herbivorous zooplankton were identified by species and
age class: cladocerans (mainly Daphnia and Bosmina),
calanoids (Eudiaptomus), and cyclopoids for the age classes
nauplii to copepodites stage 3 (higher age classes were con-
sidered carnivorous). The samples were taken at station
SHL2, at the center of the lake, midway between Evian
(France) and Lausanne (Switzerland) (lake depth, 309m).
Plankton were usually sampled twice a month. The observa-
tion error was not measured, but the collecting scientists
estimate the coefficient of variation (CV) to be in the range
of 10%-20% for an individual sample, as in Carpenter et al.
(1994). However, there are important heterogeneities in the
lake, and the CV between several samples in the same area
at the same time can be much larger (Pinel-Alloul et al.
1999). For this reason, we used in the fitting a prudent CV of
50%, which is considered realistic for zooplankton but
somewhat pessimistic for phytoplankton. As in the case of
Carpenter’s data (see above), we fit our models to each
annual series independently, starting with the onset of
plankton growth in the spring and ending with the plankton
decline in the autumn.

Error functions for regression and model selection

As explained in the Introduction, we considered two types
of errors separately, i.e., measurement error w (imprecise
sampling) and dynamic noise v (due to environmental
stochasticities, demographic stochasticity, and differences
between the real biological process and its mathematical
description). The prediction horizon with PEF is tradition-
ally one time step ahead (Carpenter et al. 1994; Dennis et al.
1995). However, this time horizon might be too short to
detect nonlinear relations or simply to observe sufficiently
strong dynamics compared to the noise in the data. For
these reasons, Ellner and Turchin (1995) predicted the dy-
namics s time steps ahead, with s chosen in such way that the
autocorrelation with the predictor drops below 0.5. We fol-
lowed this example, but the optimal choice of s is currently
under debate, and we refer the reader to Ellner and Turchin
(1995) for a broader discussion.

Goodness-of-fit is estimated with a least-squares
method. The details are found in Appendix A, and we only
mention here the general assumptions and the resulting
goodness-of-fit measures. We assume that the (observation
or process) error in the densities is of a multiplicative type
that is stationary on log scale. This type is typical for popu-
lation data in general (Dennis et al. 1995; Hilborn and
Mangel 1997). It was used and justified for plankton in
particular by Carpenter et al. (1994). For protozoan and
arthropod data, this choice also seems reasonable (Wilhelm
1993; Huffaker 1958). This estimation makes the OEF
equivalent to standard least-squares on a log scale (criterion
%> in Appendix A) and the PEF equivalent to conditional
least-squares (Dennis et al. 1995) on a log scale (criterion x>
in Appendix A).

Although stationarity (on log scale) of observation error
or process error is generally accepted, there can be con-
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siderable doubt about the normality of the log-transformed
values. Regressions with the sum of squares criteria y> (x =
w,v) are very sensitive to outliers (data points that are far-
ther away from their real value than would be expected with
a normal distribution) with respect to parameter estimation
and model selection (Linhard and Zucchini 1986). We
therefore used as a second error type the Laplacian (or
double exponential) distribution on a log scale, resulting in
the goodness-of-fit criteria y%, k¥ = w,v (“least absolute de-
viations”; see Appendix A). The details of the numerical
minimization procedures used to compute ¥ and - can be
found in Appendix B.

In a further analysis, we estimated the expectation
E(y>) and the improved estimate of prediction error IE (as
described in Efron and Tibshirani 1993) by residual
bootstrapping to compare the predictive power of the two
models. See Appendix B for a detailed technical description
of this method.

Model selection

Before performing model selection, we have to test whether
the fitted model describes the data reasonably well. The
statistic

_ [€¢ DF
(f = F(E,T], (3)

where DF is the degrees of freedom (number of predicted
data points minus number of parameters) and I is the in-
complete gamma function, is a measure of the probability of
exceeding the quantity y° by chance (Press et al. 1992). The
higher this value, the better the goodness-of-fit. However,
Eq. 3 is strictly correct only for models that are linear in the
parameters (Press et al. 1992). We must rely on the values of
Eq. 3 computed in our previous simulation analysis (Jost
and Arditi 2000) (where they ranged from 0.01 to 0.9) to
know which goodness-of-fit levels can be expected with our
nonlinear models. Assuming a larger discrepancy between
the theoretical model and the real process, we accept all fits
with a value of € above 0.001. If € is smaller than 0.001, the
fit is considered nonacceptable. Note that the use of Eq. 3 in
a least-squares framework does not permit estimating the
variance—covariance matrix (used to compute %°) indepen-
dently (Press et al. 1992). We therefore set the standard
deviation to the highest value that was reported for our data
(see Appendix A for details).

We could not find a function similar to Eq. 3 in the case
of Laplacian error y*. These fits were thus accepted if the y*
fit was accepted. Finally, the I/E criterion was accepted if
E(x") gave € values above 0.001.

Model selection is now based on the goodness-of-fit cri-
teria y°, ¥", and on the prediction error criterion IE. We
require y° or x" to differ by at least 5% between the two
models to be considered significantly different. [In the simu-
lation analysis (Jost and Arditi 2000), this requirement re-
duced the proportion of wrong identifications below 5%.]
The IE for the two models is compared directly with a
standard ¢ test (a = 0.05). The discussion is based solely on
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Table 2. Results of fits to time-series data

Data characteristics Process-error-fit Observation-error-fit

Name n dyn. s P P IE, m=* g, z v IE, m* o,
gause 1 18 st 2 rost p st r 0.13 = 0.07 p' st p' st p' 0.18 = 0.05
gause 3 18 [ 2 p' st p' ! p' 0.01 = 0.03 p' 1 p' 1 p' 0.00%
gause 4 19 [ 2 p' st p' st p' 0.31 = 0.10 p' 1 p' 1 p' 0.17 + 0.09
luckin la 35 / 3 p st p st p 0.06 = 0.04 p! p! p' 0.00*
luckin 1b 24 [ 3 p st p st p' 0.12 = 0.11 p' 1 p' 1 p' 0.00%
luckin 3 16 [ 3 st p' st p' 0.65 = 0.18 p' 1 p' 1 p' 0.01 + 0.01
luckin 4a 27 / 3 p st p st p' 0.10 = 0.06 p! p! p' 0.00*
luckin 4b 21 / 3 p ! p ! p' 0.00% p' 1 p' 1 p' 0.01 + 0.01
luckin 5 62 [ 3 p st p st P 0.01 * 0.01 p' 1 p' 1 p' 0.00%

veill 8 87 [ 3 p' st p' st p' 021 = 0.05 ol ol rf 1.03 = 0.01
veill 10 20 / 3 p !/ p st p' 0.23 = 0.05 p' p' p' 0.22 *= 0.06
flynn 1b 14 t 4 ot ot rt 0.52 = 0.04 ot ot r' 0.38 = 0.02
flynn 1c 21 st, e 4 r e r e ' 0.39 = 0.02 e e rt 1.98 = 0.19
flynn 2b 28 sty e 4 e e r 0.58 = 0.06 e e r 0.54 £ 0.08
flynn 2¢ 28 st, e 4 e e r 0.51 £ 0.13 e ' e r 0.53 = 0.16
wilh 4.2 16 st, e 4 rost r e P 1.00 = 0.01 p st p ss p' 0.00*

wilh 4.4 17 st, e 3 r'oss ross r 1.00 = 0.01 rhost st r 0.99 + 0.04
wilh 5.27 17 e 4 p st ross p 0.00%* p st r e p 0.13 £0.16
wilh 5.28 22 st,e 5 r'oe e r 1.10 = 0.04 p' pe p't p' 0.08 = 0.08
wilh 5.29 19 st 3 p' ss ' ss p' 0.43 + 0.04 st p' ss p 0.99 = 0.05
wilh 5.30 18 st, e 4 p° pe r'oss p’ 0.40 = 0.14 p't p't p' 0.31 = 0.05
gauset 2a 10 e 1 p! p! p 0.00 = 0.02 p! p! p' 0.18 = 0.16
gauset 2c 10 e 1 p ! p st r 0.26 = 0.52 p' 1 p' 1 p' 0.00%
gauset 2d 10 e 1 p !/ p !/ p 0.00%* p ! p ! p 029 £0.14
gauset 2e 9 e 1 p! p! r 0.05 = 0.12 p! p! P 0.00*
gauset 2f 9 e 1 roe r ste r 0.76 = 0.21 e e r 0.83 + 0.23
huff 11 12 el 3 rost rost p 1.00 = 0.22 rost rost r 0.80 = 0.07
huff 12 13 e 3 p! r e P 0.02 = 0.05 p! p! P 0.53 = 0.16
huff 13 10 e 2 p !/ p !/ p 0.47 = 0.18 p' p' p' 0.28 = 0.15
huff 14 10 e 2 p ! p ! p' 0.33 = 0.12 p' p' p' 0.33 = 0.11
huff 15 11 el 3 r st p! P 0.57 = 0.08 r st p! r 0.47 = 0.06
huff 16 11 el 3 p !/ p !/ p 0.63 = 0.19 p' p' p' 0.38 = 0.09
huff 17 12 e 3 r ste rost p 0.95 = 0.04 p! p! p 0.55 £ 0.18
huff 18 35 l 4 r st r st r 0.91 = 0.07 p! p! P 0.00*

huff 63-3 58 / 4 p st p st p 0.23 = 0.04 p st p st p 0.10 = 0.04
huff 63-4 23 / 3 p !/ rost p 0.19 = 0.08 p' p' p' 0.00*

paul 84 13 (st) 2 ross ross r 6.45 = 3.17 p st ot P 0.38 = 0.51
paul 85 17 st 2 p st p ss p 0.09 = 0.04 p ss p st p 0.01 £ 0.02
paul 86 14 (st) 2 p st p st p' 0.28 = 0.34 p st ot r 0.46 + 0.30
paul 87 15 (s7) 2 p st p st P 0.49 = 0.60 p' st p' st p' 0.02 * 0.05
paul 88 15 0) 2 r* ss r° ss r 0.31 = 0.42 ot p' st r 1.37 = 0.11
paul 89 13 / 2 p ss rost p 0.04 = 0.02 = st p' = 0.01 = 0.03
paul 90 16 0 2 p st ross r 0.13 = 0.22 rost rost r 1.01 = 0.31
tues 84 11 st 2 p ss ross r 0.12 = 0.14 p' st ot p' 0.00%

tues 85 13 st 2 r e r e p 041 £ 1.57 p ! pt? p' 0.00*

tues 86 14 0] 2 st st p' 1.32 = 2.10 p' ! ot p' 0.19 = 0.14
tues 87 15 0] 2 p st p pe p 0.00* p' 1 ot p 0.01 = 0.01
tues 88 13 0) 2 p' st p' st p' 0.00% p' st p' st p' 0.00%

tues 89 11 st 2 p st p st p' 0.00* p' st st P 0.00*

tues 90 19 (st) 2 p ss ross r 0.89 = 0.33 p' 1 p't p' 0.01 + 0.04
edPhy 86 14 ) 2 r ss p ss p 1.59 + 0.27 p st ross p 0.08 = 0.07
edPhy 87 13 (st) 2 p st p st p' 0.00* p' st p st P 0.00*
edPhy 88 13 (st) 2 p st p ! p' 0.00% p' st p't p' 0.00%
edPhy 89 13 ) 2 p ss rost r 0.00* st ot r 1.08 = 0.03
edPhy 90 14 (s7) 2 r'ss ross r 1.05 = 0.03 st st T’ 1.02 = 0.05
edPhy 91 12 (st) 2 r ss p ss r 0.97 = 0.07 st st r 1.02 £ 0.01
edPhy 92 11 st 2 p ss p ss r 0.14 £ 0.15 r oSt r oSt p 1.04 = 0.01
edPhy 93 12 st 3 r ste roe rf 1.00 = 0.01 ot ' rf 1.00 = 0.01
totPhy 86 14 (st) 3 pt r ss r 0.95 = 0.23 rot rot r 1.29 + 0.04
totPhy 87 13 (st) 2 p ss p ss p' 0.00* p st p r 0.00*
totPhy 88 15 0 2 p ss ross r 0.00* p st p st P 0.17 = 0.10
totPhy 89 14 0) 2 p st ross r 0.00% p' st p' st p' 0.00%
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Table 2. Continued

Data characteristics Process-error-fit Observation-error-fit

Name n dyn. s P P IE, m* g, P x IE, m* g,
totPhy 90 14 st 2 p' st I ss p' 0.08 + 0.09 p' st p' st p 0.00%*
totPhy 91 16 () 2 p ss p ss r 0.13 = 0.11 p' st st p' 0.00%
totPhy 92 16 (0] 2 ross r'oss r 1.03 = 0.02 pt p" ! p' 0.00*
totPhy 93 16 0) 2 r'oss r' ss r 0.99 = 0.05 p'l p ! P 0.00%

The data sets are described by their length n and their apparent dynamic behavior (dyn.) (in parentheses if difficult to decide): st for stable
nontrivial equilibrium, ss for strongly stable equilibrium, / for limit cycle, e for extinction of both populations, pe for extinction of the predator
only, and ¢ for transient trajectory. For each type of fit (PEF or OEF), the better-fitting model is indicated (p for prey-dependent and r for ratio-
dependent) with criteria y;, x+ (together with the dynamic behaviour of the selected model with the estimated parameters) and improved estimate
of prediction error (IE)

The bootstrap estimate of the predator dependence parameter m is given as a-trimmed mean estimate *+ standard deviation (a = 0.05); s is the
prediction horizon in PEF

Significance of model selection is indicated by a * (¢ > 0.001 with CV = 0.5) or by a ¥ (¢ > 0.001 with CV = 0.1); "indicates ambiguity due to a
low difference between the fits to each model; the absence of a superscript indicates a nonacceptable fit (see text for definitions of significance
and acceptability)

*Indicates that both /7 and o,, are smaller than 0.005

the acceptable fits that are significant (indicated in Table 2 Prey-dependent Ratio-dependent
by " or ).

A qualitative comparison between the dynamic pattern P P
of the data and the behavior of the (winning) fitted model is son
used as a second criterion for the adequacy of the model. pe
These qualitative dynamics are classified as strongly stable
equilibrium (ss) when the trajectory converges to the equi-
librium after one oscillation at most, stable equilibrium (s¢)
if there is more than one oscillation before stabilization, P isop P
limit cycle (/), extinction of the predator only (pe), extinc-
tion of both populations (e), or transient if no equilibrium ss
state is reached (¢). See Fig. 2 for an illustration of the
different types. ~ |

isop 1SON

isop

isoy isop

isoy

4

Results st 598 gon isop

The detailed fitting results (model selection per type of N N
fitting and per criterion) with additional information on P P
each time-series (size and apparent dynamics, estimates
of m) are reported in Table 2. To facilitate their interpreta- / )

tion, the essential model selection results are condensed in sopSon 5% isoy
Table 3 applying the following rules: for each time-series, a — N N
“winning” model is selected if all acceptable significant
fits (among both types of fitting and with the three different
criteria) identify the same model. Otherwise, the time- isop
series is marked as ambiguous. For the lake data, the same e
procedure was also applied separately for both types of e
fitting. Furthermore, we indicate if the qualitative dynamics N
(Fig. 2) of the selected fits correspond to the apparent Fig. 2. The different dynamic behaviors that are distinguished in the

dynamics of the time-series. Because extinction is not pos-  data and in the fitted models. Each graph shows the phase space with
sible in the prey-dependent model, we assume correct de- isoclines of prey (isoy) and predator (isop) and an example trajectory.

tection of the qualitative behavior if the fit shows limit cycle —P¢: extinction of the predator only; ss, strongly stable systems; st, stable
behavior (the closest to extinction that this model can systems; /, limit cycles; e, extinction of both populations (only possible
vior (i xtinch Is 1 in the ratio-dependent model)

produce). Figure 3 shows two example fits in time space

for OEF and PEF; Fig. 4 presents all significant fits in

phase space (for easier comparison with Fig. 2) to give an

idea of the data and the fitted trajectories in the case of

OEF.
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Table 3. Summary of model selections

Data Prey- Ratio- Ambiguous
dependent dependent

Gause (protozoa) 3() 0 0
Luckinbill, Veilleux 6 (6) 0 2
Flynn and Davidson 0 4 (4) 0
Wilhelm 3() 1(1) 2
Gause (mites) 2(2) 1(1) 2
Huffaker 4 (4) 0 6
Paul Lake 2(2) 1(0) 4
Tuesday Lake 4(2) 0 3
Lake Geneva (edible) 2(1) 4(2) 2
Lake Geneva (total) 4(1) 0 4

PEF OEF PEF OEF PEF OEF
Paul Lake 1(1) 22 o0 20) 6 3
Tuesday Lake 2(1) 63 10 0 4 1
Lake Geneva (edible) 2 (1) 2(2) 1(1) 4(3) 5 2
Lake Geneva (total) 2(1) 53 2@1) o0 4 3

The first part of the table lists for each group of time-series the number
of times that each model was selected by both fitting types, with the
number of correct qualitative dynamics in parentheses; the remaining
number of ambiguous (or unacceptable) model selections are listed in
the last column

The second part of the table treats process-error-fit (PEF) and
observation-error-fit (OEF) separately for lakes

. N O
@) data: huff63-4

abundance

data: flynn2b

(b)

abundance

Fig. 3. Two examples illustrating (a) OEF of a prey-dependent model
to Huffaker’s data (time measured in weeks) and (b) PEF (s = 4) of a
ratio-dependent model to Flynn and Davidson’s data (time measured
in days)

Protozoan and plankton data in batch cultures

As shown in Table 2, the protozoan and plankton data give
the most significant results. With Gause’s three data sets,
the prey-dependent model wins every time. This lack of
predator dependence is confirmed by Luckinbill’s and
Veilleux’s data (both with similar organisms), in which six
prey-dependent time-series are identified and two are am-
biguous. However, PEF detects the observed limit cycle
only once: the regressions result mostly in stable dynamics.
The estimates of m mostly confirm these selections (am-
biguous results show intermediate values). For one data set
of Veilleux, the ratio-dependent model is selected with
OEF: these data show fast convergence to a sustained stable
limit cycle with minima far above zero, a pattern that cannot
be produced with the prey-dependent model. However, the
fitted ratio-dependent model does not resemble the data
very much. We think that this significant ratio-dependent fit
results from the multiplicative error structure that gives
more importance to points closer to zero. When repeating
the regression assuming a Gaussian error, the fit becomes
significantly prey dependent. See the Discussion for further
remarks on Veilleux’s data.

An interesting exception to this prey-dependent pre-
dominance is provided by the four data sets of Flynn and
Davidson (1993): the ratio-dependent model is selected
very significantly for all criteria and both types of fitting.
Note that the estimates of m are all close to 0.5, indicating
that the numerical value of this highly nonlinear parameter
must be interpreted with caution (compare with dataset
huff 16 with similar » but that fitted significantly better to
the prey-dependent model).

The data of Wilhelm (1993) are the least conclusive: the
prey-dependent and the ratio-dependent models are se-
lected three times and one time, respectively, whereas two
data sets yielded ambiguous selections. The preequilibrium
dynamics in the time-series (always one large amplitude
cycle followed by a long time of stable coexistence) are
probably too short for a reliable model identification.
The estimates of m are compatible with these selections
(only the last dataset seems to show intermediate predator
dependence).

Mite data (spatially complex laboratory systems)

Both models fit rather poorly to Gause’s and Huffaker’s
data on mites (low values of Eq. 3), causing numerous am-
biguous results. The few significant results are always
prey dependent, with one exception (gauset2f). The esti-
mates of m confirm these selections with a tendency to
being intermediate. All data show unstable oscillations
that come close to extinction. These dynamics are correctly
reproduced with both models and OEF (Figs. 3a, 4).
Interestingly, the prey-dependent model retains these un-
stable dynamics with PEF while the ratio-dependent model
mostly converges to a stable system; this is a further indica-
tion that the prey-dependent model is closer to the real
dynamics.
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luckinda

huff13
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huff16

| R2=0,99,
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tues88
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edPhy91

.
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edPhy93

R2=099 “. .

totPhy87
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Fig. 4. Representation of all significant OEFs in phase space (to facilitate comparison to Fig. 2). Black dots connected by dotted lines are the data;
black lines are the fitted trajectories; long dashed lines are the prey isocline; short dashed lines are the predator iscoline (vertical in the prey-
dependent model, slanted through the origin in the ratio-dependent model)
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Plankton data (complex lake systems)

In general, the plankton data are very noisy and it is not
clear if there are well-defined dynamic patterns or only
noise. However, the algorithms seemed to find dynamic
patterns in some cases.

With OEF, Paul Lake gives a significant fit four times,
with two being prey dependent. PEF gives only one signifi-
cant fit (prey dependent). Carpenter et al. (1994) had not
found any significant result for this lake with discrete
predator-prey models and PEF (one-step-ahead fitting),
which agrees with our finding. The results are rather differ-
ent in the manipulated Tuesday Lake. OEF selects the prey-
dependent model in six of the seven time-series, with one
ambiguity. PEF is less conclusive, selecting the prey-
dependent model twice and the ratio-dependent model
once, whereas three fits are nonacceptable and one is am-
biguous. Interestingly, Carpenter et al. had found a good fit
for this lake to the ratio-dependent model. We do not know
if this discrepancy comes from the fact that we looked at
seasonal dynamics or because we used continuous models.

In the case of Lake Geneva, prey data represent either
edible algae only or total algal biomass. OEF gives the
clearest trends: ratio dependent (four vs. two) for edible
phytoplankton and prey dependent (six vs. one) for total
phytoplankton. With PEF, the trends are less distinct but
appear to contradict the previous results: prey dependent
(five vs. zero) with edible phytoplankton and ratio depen-
dent (three vs. two) with total phytoplankton. Ambiguities
between results from the two types of fitting appear in two
cases.

The m values are compatible with all model selections.
Regarding the qualitative behavior, OEF often results in
limit cycle behavior or the trajectories do not reach the
stable equilibrium within one season (these fits are labeled
transient in Table 2; see also Fig. 4). PEF nearly always
results in stable systems; especially, the ratio-dependent
model often shows strongly stable dynamics (a pattern
termed limited predation by Arditi and Ginzburg 1989; see
Fig. 2) where the equilibrium would be reached in less than
2 months.

Discussion

This study shows that predator—prey time-series can reveal
the presence of predator dependence in the functional re-
sponse if they are of good quality and show sufficient varia-
tion in predator abundance. The most significant results
were obtained with the protozoan and plankton laboratory
data. Most of these systems are closer to prey dependence.
However, one predator—prey system with four time-series
(Flynn and Davidson 1993) showed very significant preda-
tor dependence. The predators in this system are capable of
strong interference in the form of cannibalism at low prey
densities, although such cannibalism was not observed in
the analyzed data (personal communication with the au-
thors). Furthermore, the cultures were mixed only once per

day; therefore, the development of spatial heterogeneities
was possible. Both factors have been shown to lead to
predator dependence (Beddington 1975; Poggiale et al.
1998). To our knowledge, this is the first example of a
marine plankton system with monospecific prey and preda-
tor that exhibits such strong predator dependence.

That simple homogeneous and monospecific predator—
prey systems are better approximated by a prey-dependent
model was also found by Kaunzinger and Morin (1998),
studying the effects of enrichment in a three-level proto-
zoan food chain, and by Bohannan and Lenski (1997, 1999),
who reported that the dynamics and equilibria of a bacte-
ria-bacteriophage system agreed better with a complex
prey-dependent model than with a simple aggregated ratio-
dependent model. Actually, microbiologists have a 40-year
record of comparing the two functional responses (Eq. 2),
although with a different vocabulary: the functional
response corresponds to the substrate uptake function, the
Holling type II model is known as the Monod model, and
the ratio-dependent model (Eq. 2) is Contois’ (1959) model.
Reviewing this literature, Jost (2000) concluded that
Monod’s model seems adequate when the substrate is
homogeneous and the microbial organism is a pure strain.
In all other conditions (e.g., sewage or fermentation pro-
cesses), substrate uptake is influenced by organism density,
often to an extent that makes Contois’ model more
adequate than Monod’s model.

The poor agreement between the long cyclic time-series
of Veilleux (1979) and our simple models indicates that
more complex models are necessary and justified with such
high-quality data. Using additional time series from
Veilleux (1976), Jost and Ellner (2000) reconstructed the
functional response nonparametrically while also allowing
for a delay in the reproduction functions of both prey and
predator. Delayed effects not only improved the fit signifi-
cantly but also revealed significant predator dependence in
the reconstructed functional response (without delay,
predator dependence did not show up). This predator de-
pendence is, in most cases, very well approximated by the
ratio-dependent model. This result suggests that the find-
ings of the present study are only valid within our modeling
framework, i.e., without delays.

There also seems to be little predator dependence in
Gause’s and Huffaker’s mite data. In most cases, the prey-
dependent model fits better or the time-series are too short
to detect predator dependence reliably. Although most of
the fits agree qualitatively with the data (see Figs. 3a, 4),
Huffaker’s data agree rather poorly from a quantitative
point of view, which might be explained by his heteroge-
neous experimental setup. Such a laboratory system is
structurally more complex than Gause’s system or the pro-
tozoan batch cultures of the previous paragraphs.

The fits to phytoplankton and zooplankton data are the
most difficult to interpret. Either the data are too noisy for
this kind of model identification, or both models are too
simple for lake dynamics. The first interpretation is sup-
ported by the fact that PEFs give mostly stable or strongly
stable dynamics, suggesting that the best prediction is sim-
ply to use some mean abundance of prey and predator.



However, many significant model selections were obtained
with OEFs, showing that long-term dynamic patterns exist.
These significant fits are of both types (prey-dependent and
ratio-dependent), with tendencies for some lakes: Tuesday
Lake is (mostly) closer to the prey-dependent model, Lake
Geneva with edible algae is closer to the ratio-dependent
model, and Lake Geneva with total algal biomass is closer
to the prey-dependent model. Brett and Goldman (1997)
argued that the phytoplankton—zooplankton interaction is
subject to both bottom-up and top-down forces, which
might explain these differences among lakes. Recall also
that we allowed for year-to-year differences in the physical
environment but assumed the environment to be constant
within a season. There is a growing literature that invokes
seasonality (in temperature or light, for example) to explain
plankton dynamics in lakes (see Scheffer 1998 for a recent
review). Comparing our models to typical plankton dynam-
ics (Sommer et al. 1986), we found elsewhere (see Chapter
4 in Jost 1998) that addition of a third trophic level (either
top predators or nutrients) is another option to explain the
distinct spring and summer peaks of phytoplankton. Our
models might therefore be too simple for lakes and this
drawback may cause the ambiguous model selections.

Model selection based on goodness-of-fit

How good are the fitting criteria in performing model selec-
tion? Considering the proportion of ambiguous model
selections (marked with  in Table 2), we see that OEF was
ambiguous half as often as PEF, in all analyzed systems. It
appears therefore that OEF is a more efficient tool than
PEF in selecting models; this difference was also noted by
Harrison (1995). Polacheck et al. (1993) did a similar com-
parison between OEF and PEF with respect to parameter
estimation and also favored the former due to the higher
precision of the estimated parameters, just as we earlier
found smaller parameter confidence intervals with OEF
(Jost and Arditi 2000). However, the data contain both
types of error, and Jost and Arditi (2000) showed that con-
current selection based on both types of fitting reduced the
risk of a wrong selection by =90% compared to selection
based on OEF only. Actually, model selection appears less
limited by the type of fit than by the dynamic variation in
relation to errors in the time-series. When there are strong
dynamics over the whole length of the time-series, then
both fits identify the same model; only if there is little dy-
namic variation (one large initial oscillation as in Wilhelm’s
data) or if the dynamics are hidden behind strong observa-
tion errors, as in lakes, do ambiguous results become more
frequent.

Would we have obtained different results if we had
based model selection on the estimates of m rather than on
the goodness-of-fits of the two simpler models? With re-
spect to the detection of predator dependence, little would
change: ambiguous selections remain ambiguous; most
selections are confirmed with a tendency to conclude inter-
mediate predator dependence or not to select at all as a
result of large parameter ranges. The algorithmic problems
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(convergence) were more acute with the Hassell-Varley—
Holling model. The most important observation is that the
numerical value of m might give a wrong indication to prac-
titioners who want to select a simple two-parameter model
(see the Flynn and Davidson data or Huffaker’s data).

A number of technical problems with both types of fit-
ting are worth discussing. The strongest limitation of OEF is
that it works only for relatively short time-series because
process errors accumulate with time even in well-controlled
laboratory systems (Harrison 1995). PEF is questionable
with respect to the choice of s (time-steps-ahead prediction;
see discussion in Ellner and Turchin 1995). However, com-
pared with a preliminary analysis with s = 1, the present
analysis only increased the number of significant selections
without changing the selected model. Our conclusions thus
appear to be quite robust with respect to the choice of 5. A
high potential for improvement can be found elsewhere:
when predicting s steps ahead, our method implicitly also
predicts 1, 2, ..., s — 1 steps ahead, and there is currently
no statistical solution for how this information should be
properly incorporated into the fitting process (especially
when fitting continuous models).

For future research in this direction, we also need more
quantitative information on observation and process errors
in the time-series data or more tests of the performance and
selective power of algorithms which estimate them both
simultaneously (Myers and Cadigan 1993; Bjgrnstad et al.
1999); this would facilitate selection between models of
different complexity (by using information criteria such as
AIC or BIC; see Hilborn and Mangel 1997). However, these
methods are computationally very expensive, especially for
fitting continuous systems: bootstrapping one single data set
can take a full week of computing time on a couple of
workstations (Peter Turchin, personal communication). For
such reasons, simpler regressions, as done in this article, will
remain a useful tool in ecology, especially because extensive
simulations with artificial data are often the only possibility
to test whether the available data can answer the question at
hand.

Conclusion

To summarize, well-controlled laboratory systems with
monospecific prey and predators generally show little
predator dependence in the functional response except in
cases where predators have a strong potential to interfere
with each other (e.g., cannibalism). However, this result
seems to be valid only within the present modeling frame-
work, because the inclusion of delays can have profound
effects on the detection of predator dependence (Jost and
Ellner 2000). More complex systems such as plankton in
freshwater lakes show a multitude of patterns. These het-
erogeneous systems with multispecies prey and predator
levels cannot be described by one simple type of functional
response. Or, in the words of Yodzis (1994), “It remains
frustratingly difficult to say just which functional form is the
appropriate one for a given population.” As a consequence,
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population management decisions either should be based
on statistical analyses that include this model uncertainty
directly (Buckland et al. 1997; Wood and Thomas 1999)
or they should be based on the predictions of several com-
peting models, building up confidence in each model by
constant comparison with actual observations. We should
be comfortable if all models make the same prediction;
otherwise, we must use the current level of confidence in a
given model.
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Apendix A: Development of the stochastic model

Consider a process in the form of a simple differential equa-
tion (DE) dy/dt = f(y,0), where 0 is a vector of g param-
eters. From this deterministic model, we construct a
stochastic model that details how stochasticity enters the
process and the observations of the state variable y. Based
on this stochastic model, we can then develop the likelihood
function to fit the DE to time-series data (¢, Y,),-.-, (Where
t; is the time at which the population y is observed to have
density Y; and # is the number of data points).

Let 9, be the unknown real population density at time ¢,
and y(t;) = y(¢,0) the deterministic solution of the differen-
tial equation at time ¢ with parameters 6. If there is only
observation error in the data, then the whole trajectory is
fitted (the process is deterministic) and there is only one
initial condition, y(#,) = y,, which is treated like a free
parameter and estimated with the other parameters 6 (see
Fig. 1a). If there is only process error, then the initial condi-
tion is different for each predicted data point and defined as
the data point (measured without error) s steps previously,
y(t_,) = Y,_,,s = 1 (see Fig. 1b; s = 2). With these notations
and with At, = t, — t,_, the process can be written as follows:

Observation error w only:  Process error v only:

Vi = y(1,0) ¥ = y(6,0)v(ALf,0)
Y. =yw Y, =y,
y(tl) = _)/}1 y(tifs) = Yi*S

Let us assume that observation error w and process error v
are lognormal random variates with constant coefficients of
variation CV , and CV , respectively. Note that the accumu-
lated process error v (best formulated by a stochastic differ-
ential equation) depends in general on the time interval
between measurements and on the underlying process f
with parameters 6. To our knowledge, a better way of ac-
counting for this process error in the fitting algorithm would

be computationally very expensive. Fortunately, the simula-
tion analysis (Jost and Arditi 2000) (where the artificial
time-series contained process error in the form of a stochas-
tic differential equation) had shown that our gross
simplification still gives fairly reliable model selection
results, while allowing acceptable computing times (e.g.,
bootstrapping the estimates of m took 2 weeks on a fast
iMac computer).

The log-transformed data are assumed to be Gaussian
with expectation logj;, and standard deviation o, =
Vlog(CVi+ 1), k = o, v. Let r, = logY; — logy(t, 0) and
V = o> (note that, for vector-valued Y, the residual r, is a
vector and V is the variance—covariance matrix). With con-
stant V, a maximum-likelihood fit of the model to the data
is equivalent to minimizing the sum of squared residuals
weighted by the variance—covariance matrix:
K= o,V

ze = min ¥ 5V, 4)

i=1+s

with s = 0 for k¥ = w.

In our predator—prey model, Y = (N, P) and V =

oy O
{ N 2}. In this case, Eq. 4 resolves to
0 op

2
n logN, — 1 .0
Xe = min > (og ; ~ lognls, ))

i=1+s

ox
2 s)
(log P, — log p(t,.0))

+ 2

Op

For our data, the highest reported CVs were 0.5 (corre-
sponding to ¢ = 0.47), and little information was available
on whether prey and predator variances were different. We
thus assumed them to have the same value o. With this
assumption, y% is equivalent to standard least-squares re-
gression in the case of observation error only (Press et al.
1992; Hilborn and Mangel 1997), whereas it is equivalent to
conditional least-squares regression in the case of process
error only (Dennis et al. 1995).

In general, the true nature of the error can be intermedi-
ate between Gaussian and log-normal; this was assumed in
the regression analysis of Harrison (1995) performed with
Luckinbill’s data, but this approach requires another
parameter that Harrison determined empirically. We re-
frained from such an approach for reasons of parsimony.
The multiplicative error type appears overall better suited
to the kind of data we analyzed.

For the Laplacian criterion, we assume that the log-
transformed data have a double exponential distribution
instead of a Gaussian one. Maximum likelihood with this
error function results in the criterion

Lo . (e ~ o )
+

|10gP,- - logp(t,-,é’)D,

X =
(6)

K= w,v



Note that there now exist algorithms that permit estimat-
ing observation and process error simultaneously in the
context of discrete time-series models (see Myers and
Cadigan 1993 or Bjgrnstad et al. 1999), but we could not
find any information on how these algorithms perform for
continuous models and in the context of model selection
(where the estimated observation error should be indepen-
dent of the underlying deterministic dynamic model, i.e.,
the same for all alternative models). However, we think that
these algorithms have great potential for future research
when higher computing power is available.

Appendix B: Numerical methods, residual
bootstrapping, and IE

The models were fitted to the time-series with error func-
tions x> and y% in a three-step procedure: (1) computing
upper and lower limits of the parameters from the time-
series data, (2) finding starting values of the parameters
with a genetic algorithm (GAlib 1.4.2 from http:/
lancet.mit.edu/ga/, with population size 50, mutation rate
0.01, crossover rate 0.1, and 600 generations), and (3) com-
puting the optimal parameters with the downhill simplex
method of Nelder and Mead combined with simulated an-
nealing (routines mrgmin and amotsa from Press et al.
1992). See Jost and Arditi 2000 for a more detailed descrip-
tion. The solutions of the ordinary differential equations
(needed to compute the error functions) were simulated
with the adaptive step-size fifth-order Runge—Kutta method
odeint from Press et al. (1992). In this regression scheme,
we use only the available time-series data to estimate the
parameters and, with them, the discrepancy between model
and data. Only logical constraints such as positivity of pa-
rameters are applied. The genetic algorithm was mostly
needed to obtain reasonable initial fits that permitted the
other algorithms to converge without much manual work.
Note that the fitting algorithm proposed in Bock (1983)
might be an efficient alternative.

For residual bootstrapping, it is assumed that the model
being used is correct and the parameters obtained by
minimizing the equation y> are used to construct the boot-
strap time-series. The notation introduced in Appendix A
is used. Fitting the whole trajectory (with initial condition
as a free parameter or nuisance parameter) is related to
simple nonlinear curve-fitting, and the following algorithm
is taken from Efron and Tibshirani (1993). For PEF, the
same algorithm can be used with some slight modifications
that are indicated. Let 6 be the best fitting solution to the
original data, obtained by minimizing equation y>, with the
residuals

& = logY, — logy(ti,é), 1+s<i<n
(s = 0 for OEF) and total error é. These residuals represent
the empirical distribution function of the residuals. Then,
the bootstrap estimates are created by the following
algorithm:
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1. For PEF only: fix initial values y*=Y,1 =i <.
2. Calculate the bootstrap data (y#),,,=;=, by

logy* = logy(t,-,é)—i—s;“ l+s=i=n
where the ¢f are a random sample with replacement
from the (€,),,,= . (for predator—prey data, all residuals
are thrown in the same pool). For PEF, s = 1 and the
bootstrap data are calculated recursively.

3. Estimate 6* from the bootstrap data by minimizing
equation y2, with final error e*.

4. Go to the second step and repeat the loop B times
(B = 50).

Efron and Tibshirani (1993) suggested that B = 50-200
is in general sufficient for a reliable bootstrap estimate.
Because regression of a differential equation to data is al-
ready quite costly, we used the lower value (B = 50), thus
permitting us to bootstrap one to four time-series per day.
The standard deviations of the parameter m were estimated
with B = 100.

With this bootstrapping procedure, we can compute the
improved estimate of prediction error (/E; described in
Efron and Tibshirani 1993, Chapter 17). Let e4 be the error
with the original data obtained using the fitted bootstrap
parameters 6*. The difference e; — e* is in general positive
and is called the “optimism.” The improved estimate of
prediction error is now calculated by

1 |., 1&
+ =VYe. —e*
ns{e B,Z‘(ee*" “ ﬂ

(s = 0 in the case of OEF), and its standard deviation is
taken to be the standard deviation of the optimism scaled
by the number of predicted data points. This estimation of
prediction error is independent of the estimated residual
variance and the number of parameters fitted; thus, it is less
model dependent than alternatives such as C, and BIC
statistics (Efron and Tibshirani 1993).

IE =
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