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INTRODUCTION

Finding the functional relationship between observed
variables is one of the major tasks in ecology. Often,
several mathematical forms based on different assump-
tions about the dominant mechanisms at work are
available. Fitting these functions to the data and apply-
ing goodness of fit as a criterion to select the best model
are then used to detect the dominant mechanism for the
particular system from which the data were obtained.
One particular application of this concept is to test alter-
native dynamic predator�prey models against predator�
prey time series data and thus to identify the processes
that drive these dynamics. While these processes can
sometimes be identified by direct experimentation, such
experiments often involve very artificial conditions (e.g.,
using starved predators to estimate consumption) or are not
performed on the appropriate time scale (on the behavioral
scale instead of the demographic scale), or the dynamic
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changes during the experiment are difficult to consider
(e.g., prey depletion during the consumption experi-
ment). The dynamic approach to fitting the dynamic
model to time-series data avoids these problems and has
the additional advantage that it can be applied to data
from historical experiments where only the time-series
were reported. Furthermore, not only conformance
between the processes and the data is tested, but also
how these processes are connected to build the full model
(e.g., conservation of mass). However, the dynamic
approach suffers from other constraints due to the fact
that process is inferred indirectly from the dynamics. We
thus regard the dynamic approach as complementary to
other, more direct studies.

How these dynamic models are fitted to a time series
depends on the source of stochastic noise in this time
series: if the dynamics are deterministic and there is only
observation error (measurement error), then the whole
trajectory (solution of the dynamic model) is fitted to the
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data (termed ``observation error fit'' by Pascual and
Kareiva, 1996). If there is only dynamic noise (environ-
mental or demographic stochasticity) and the data are
measured exactly, then each observation is taken as an
initial condition and the fitting is based on predicting a
short time period ahead (termed ``process error fit'' by
Pascual and Kareiva, 1996).

Harrison (1995), for example, reanalysed Luckinbill's
(1973) classical protozoan data and fitted them to 11
different (continuous) predator�prey models. He assumed
that the data contained only noise due to observation error.
Unfortunately, his statistical comparison tests did not
take into account the different numbers of parameters
among the different models. It is therefore not surprising
that a rather complicated model with 11 parameters
fitted the data best. Carpenter et al. (1994) fitted (discrete)
predator�prey models to phyto- and zooplankton time
series from North American freshwater lakes to test
whether the predation process depended significantly on
predator density. Their analysis was designed to treat
data that contained noise due to both observation error
and process error, fitting in such a way that the predic-
tion one time step ahead was minimized. To avoid any
assumptions about the presence or absence of higher
predation on the predators they fitted only the prey equa-
tion, using the predator data as an input. While their
tests took the number of parameters into account, they
did not justify the use of discrete models (with the time
step being the time between measurements) to describe a
system showing the characteristics of a continuous
system.

Does a better fit of one model compared to another
one always imply that its functional form represents the
actual processes at work more accurately? There exist,
for example, simple algebraic differential equations that
can fit perfectly to any finite time series (Rubel, 1981). It
can also happen that very different models fit equally well
to the same data (Feller, 1939). A slightly better fit of one
of these models could be an artifact of the time series
being one particular realisation of an ecological process
with all its random influences. Another realisation
(replicate) might give a different result. Therefore, the
reliability of goodness of fit to determine the functional
form of a process from time series data should be
examined, e.g., with artificial data for which the func-
tional form is known.

Carpenter et al. (1994) were aware of this problem and
they tested their method with artificial data that they
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created with parameter values typical of their limnologi-
cal system. In this article, we will perform a similar
analysis for a larger range of ecological systems. We will
test whether predator�prey time series that represent the
(continuous) dynamics of a stable focus contain sufficient
information to detect if predator density influences the
predation process strongly enough to influence the
dynamics of the system. Such time series typically contain
noise due to both observation error and process error.
The fitting techniques will include observation error fit
(as used by Harrison, 1995) and a modified process
error fit (as used by Carpenter et al., 1994). Unlike
Carpenter et al., we will predict s steps ahead instead of
only one step ahead. The idea is to predict over a time
range during which nonlinear effects become detectable.
The determination of s will be based on the arguments
developed and justified by Ellner and Turchin (1995).

We will work with very simple predator�prey models
whose purpose is not to describe the dynamics of a
specific system perfectly but rather to describe it in a
qualitatively correct manner. Simplicity in the descrip-
tion of the key processes (growth, death) is essential in
models of more complex food chains or whole food webs,
where the number of parameters becomes a limiting
factor for analysis and parameterization. Although such
complex models are not the subject of this article, it is
with this purpose in mind that we deliberately consider
simple predator�prey models.

Based on the principles of mass conservation (Ginzburg,
1998) and decomposition of the dynamics of a population
into birth and death processes, the canonical form of
such a predator�prey model is

dN
dt

=f (N) N& g(N, P) P=: FN(N, P)

(1)
dP
dt

=eg(N, P) P&+P=: FP(N, P),

where N and P are the abundances of prey and predator
respectively, e is the conversion efficiency, and + is the
death rate of the predator in the absence of prey. The key
processes are the prey growth function f and the link
between prey and predator, the functional response g
(prey eaten per predator per unit of time, Solomon,
1949). The latter represents the predation process. We
will test if model fitting can reveal whether g is approxi-
mately a function of prey abundance only (g= g(N), as
it is the case in standard functional response models, e.g.,
Lotka (1924) or Holling (1959)) or g also depends
significantly on predator abundance. Such predator
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dependence influences the stability of predator�prey
systems (DeAngelis et al., 1975; Murdoch and Oaten,
1975) and the response of the prey equilibrium to an
enrichment of the system (Arditi and Ginzburg, 1989).



Its detection in natural predator�prey time series is
therefore a challenging task.

Introducing explicit predator dependence, g= g(N, P),
as was done by DeAngelis et al. (1975), normally increases
the complexity of the function g, making it difficult to
compare with the simpler prey-dependent form g= g(N).
A special case of a simple predator-dependent function
was suggested by Arditi and Ginzburg (1989), assuming
that g= g(N�P). Models of this type are equally simple
as prey-dependent models and can therefore be directly
compared with them. However, ratio dependence
represents only one special case of predator depen-
dence, and the only reason to favour it against other
predator-dependent functions is its simplicity. This ratio-
dependent functional response, like other predator-
dependent functional responses, but in contrast to
prey-dependent functional responses, leads to the
observed correlated equilibria of prey and predators
along a gradient of richness (Arditi and Ginzburg,1989;
Mazumder, 1994; McCarthy et al., 1995). The issue of
ratio-dependence is currently subject to some debate
(Abrams, 1994; Sarnelle, 1994; Akc� akya et al., 1995;
Abrams, 1997; Bohannan and Lenski, 1997; Hansson et
al., 1998).

In this article, we do not address the question of the
ecological significance of one model or the other. Instead,
we attempt to answer whether it is possible to assess the
importance of predator dependence from typical time
series. In particular, we analyse the dynamics of predator�
prey systems with low initial conditions and trajectories
reaching a stable, non-trivial equilibrium after one or two
large amplitude oscillations. Such dynamics are considered
typical of seasonal dynamics of phyto- and zooplankton in
freshwater lakes of the temperate zone (Sommer et al.,
1986) or of chemostat and batch culture experiments with
protozoa (another source of published time series data,
e.g., Gause et al., 1936, Luckinbill, 1973). Typically, such
time series are short (about 20 data points per season in
lakes, 10�50 data points with protozoa), and can have
considerable observation and process error. Differential
equations seem an adequate tool to describe these
systems since there are overlapping generations and large
numbers of individuals. Using a simulation approach, we
will generate artificial time series (``pseudo-data'') with
a prey-dependent and a ratio-dependent functional
response of the same simplicity, to which we will add
process and observation error. Regression techniques
will then be applied and we will test whether the best-
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fitting model is indeed the one that created the data. A
by-product of this kind of identification is the computa-
tion of the actual model parameters. We will analyze the
quality of these estimates (value, standard deviation) to
test the power of the regression method for parameter
estimation.

THE ALTERNATIVE MODELS

Building on the canonical form (1) we use a standard
logistic growth for the reproduction function f,

f (N)=r \1&
N
K+ ,

with maximum growth rate r and carrying capacity K.
Two models (that both have the same number of param-
eters) are chosen for the functional response, a prey-
dependent one and a predator-dependent one. We chose
the classical Holling type II model on the one hand, and
a ratio-dependent model (Arditi and Michalski, 1995) on
the other,

aN
1+ahN

� g(N, P) �
:N�P

1+:hN�P
,

where a is the searching efficiency, h the handling time,
and : some kind of total predator searching efficiency.
We selected the Holling type II form rather than equally
plausible alternatives such as the Ivlev functional response
(Ivlev, 1961) simply because it is more widely used in
ecology as well as in microbiology (Monod, 1942). The
particular form of the predator-dependent functional
response closely resembles the Holling type II function,
thus making direct comparison between the two models
possible. This form also tends to be regarded as the
standard form of a ratio-dependent functional response
in mathematical studies (Freedman and Mathsen, 1993;
Cosner, 1996; Kuang and Beretta, 1998) and it is known
in the microbiological literature as Contois' model
(Contois, 1959).

Despite their structural difference, the two models
can produce very similar temporal dynamics. This is
illustrated in Fig. 1: time series were created with both
models (with parameters corresponding to a stable
focus), process error and observation error were added,
and then both models were fitted crosswise to these time
series (see the next section for the details of these
methods). It can be seen that each model fits very well
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to the data created by the other model. A good fit
alone is therefore a poor indicator whether the used
model correctly describes the processes that generated
the data.
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FIG. 1. Examples illustrating that each model (the prey-dependent a
that were created by the other model. (a) Ratio-dependent model fitted t
data. Diamonds represent the prey time series and stars the predator tim

MATERIALS AND METHODS

Artificial Time Series

For this analysis to be valid for many different predator�
prey systems, the pseudo-data must be generated with
widely differing parameter values. Possible parameter
values must adhere to ecological and dynamical con-
straints. Such a constraint applies to the conversion
efficiency e, which should be within the interval (0, 1) if
abundances of both prey and predator are measured in
biomass (the usual case in freshwater studies). Param-
eters K and h can be chosen arbitrarily since they depend
entirely on the time and weight scales that are used.
Given these three parameters, we can find intervals for
the remaining parameters by the requirement defined
above: existence of a non-trivial stable equilibrium
reached through oscillations. Within these intervals, the
parameters are chosen randomly. Initial values of prey
and predator abundances are then chosen 2 to 10 times
below their equilibrium abundances. Such a randomly
created parameter set (with initial values) is retained
only if the following properties are respected: (1) prey
and predator equilibria do not differ by more than a
factor of 100 and (2) the deterministic trajectories of prey
and predator show at least two distinct oscillations
before reaching the equilibrium. The simulation time T is
set in order to have these two oscillations. These final
criteria assure an at least twofold variation in predator
abundance (which is essential for model identification)
and keep prey and predator abundances on comparable
scales (see Fig. 1 for two examples).

For each functional response, 20 such parameter
sets were created. In analogy with the replicates of a
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typical ecological experiment, we created 5 replicate
time series with each parameter set by numerical inte-
gration of a stochastic version of the differential equa-
tions (1),
the ratio-dependent one) can approximate satisfactorily time series data
rey-dependent data. (b) Prey-dependent model fitted to ratio-dependent
ries. See the text for further details.

Nt+2t =Nt+FN(Nt , Pt) 2t+_p Nt=N, t2t
(2)

Pt+2t=Pt=FP(Nt , Pt) 2t+_p Pt=P, t 2t,

with =N, t and =P, t being random normal variates with
mean zero and variance one, 2t :=T�500, and _p the
process error level. This stochastic process was sampled
at 20 equal time steps and a lognormally distributed
observation error (with coefficient of variation CV) was
incorporated by multiplication by the exponential of a
normal variate with mean zero and variance log(1+CV2).
With this formulation, both process error and observation
error are of a multiplicative type, as suggested to be typical
for natural populations (Hilborn and Mangel, 1997;
Carpenter et al., 1994). Time series with two noise levels
were created, with CV and _p both set to 0.05 or both
set to 0.1. The first case is comparable to protozoan
laboratory data and the latter to data from freshwater
plankton experiments (Carpenter et al., 1994). This
makes a total of 400 data sets (2 models_20 parameter
sets_5 replicates_2 noise levels).

Error Functions

The key part in fitting a model to data is the formula-
tion of the function to be minimized. Depending on the
stochastic elements in the data (process and�or observa-
tion error), the error function must be chosen accordingly.
Ecological data have usually both types of error. However,
statistical methods that take both into account are rare
and little is known in the case of nonlinear regression.
The usual practical solution is therefore to neglect one of
the errors and to develop the error function for the other
(Pascual and Kareiva, 1996). We will follow this approach
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but also test two error functions that claim to be able to
take both errors into account.

For ease of notation, consider a simple autonomous
differential equation y* = f ( y) with time series data



(ti , Yi)1�i�m , where ti is the time at which the popula-
tion y is observed to have density Yi , and m is the
number of data points. [For predator�prey models y has
to be replaced by the pair (N, P) and adaptations for this
case that are not obvious in the development below will
be noted in brackets.] Let y(ti) be the deterministic
solution of the differential equation at time ti and ŷi the
(unknown) real population density at time ti . If the data
have only observation error, then there is only one initial
condition, y(t0)= ŷ0 , that is treated as a free parameter.
In this case we will denote the deterministic prediction as
y|(ti). If there is only process error, then the initial condi-
tions are different for each consecutive data point and are
defined as the data value s steps previously, y(ti&s)=Yi&s ,
with deterministic prediction y&(ti) (see Fig. 2). s is chosen
as the smallest value for which the autocorrelation in the
time series is below 0.5. Ellner and Turchin (1995) had
developed this method to choose s on empirical rounds
and argued that nonlinear patterns can be detected more
reliably with this s-step-ahead prediction than by the
standard one-step-ahead prediction. In our artificial
data, s always took the value 2. With these notations, the
process can be written as

Observation error only Process error only

ŷi= y|(ti , %) ŷi= y&(ti , %) &(2ti , f, %)

Yi= ŷi | Yi= ŷi

y(t0)= ŷ0 y(ti&s)=Yi&s

where % is the vector of model parameters. We will
suppose that the observation error | in the densities is of
a multiplicative type (lognormal), as used in Carpenter
et al. (1994) and Hilborn and Mangel (1997), with a
constant coefficient of variation CV| . The (accumulated)
process error &i depends in general on the time interval
2ti=ti&ti&s and on the dynamics f over this interval.
However, for many ecological time series the interval 2ti

is constant and we further simplify by ignoring the effect
of the dynamics of f. Thus, process error &#&i will be
considered to be a lognormal variate with constant CV&

(Carpenter et al. 1994). These two lognormal errors are
considered to be exponentials of two normal variates
with expectation 0 and variance _2

k=log(CV2
k+1),

k=|, &.
The log-transformed data Yi are therefore Gaussian

with expectation log( ŷ ) and standard deviation _ . We

Model Selection from Time-Series
i k

define the residuals

di, k=log(Yi)&log( yk(ti)), k=|, &. (3)
FIG. 2. The fitting procedure changes with different types of error
in the data. (a) Observation error only. The whole trajectory is fitted to
the data, treating initial conditions as parameters. (b) Process error
only. The best approximation is to fit from one point s points ahead
(two-step-ahead prediction in this case).

Assuming now only one type of error, the error function
to be minimized becomes

X 2
k= :

m

i=1

d2
i, k

_2
k

, k=|, &. (4)

Figure 2 shows the difference between the error functions
assuming observation error | or process error & only. It
is visible in this figure that in the case of process error, the
first summand (i=1) is 0. Note that in s-step-ahead
prediction the error is only computed after the s steps,
not taking into account deviation from intermediate data
points where we have made no assumptions about
accumulated process error. For vector-valued yk(ti) the
residual di, k is a vector and Eq. (4) becomes X 2

k=
� d T

i, k V &2di, k ( T stands for transposed) with the co-
variance matrix V (which is in our case a diagonal matrix
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with the respective standard deviations as elements). Mini-
mizing Eq. (4) is equivalent to a maximum likelihood
approach (Press et al., 1992) and since _k is a constant, it
is also equivalent to the usual least-squares regression.



Notice that the expectations of & and | are not 1 but
exp(_2

k�2)=- CV2
k+1, k=|, &. This may seem strange

on first view, but in fact allows the simple formulation of
the residuals as the difference of the logs. If we had
E(&)=E(|)=1, then we would have to add _2

k�2 to the
residual (3) for it to have expectation 0 (Hilborn and
Mangel 1997, personal communication with R. Hilborn).
The problem is purely technical: one may prefer the log-
normal variate to have expectation 1 or its log-transform
to have expectation 0. With real data, one does not know
which assumption is more reasonable. Furthermore,
since the _k 's are often not known very precisely, there is
a risk of doing more harm than good by adding the term
_2

k �2 to the residuals di, k . Therefore, one usually finds in
the statistical literature the difference of the logs only
(Ratkowsky, 1983; Hilborn and Mangel, 1997), and we
will follow this safer approach.

If both types of error are present simultaneously, y(ti)
also depends on the observation error in the data point
s steps previously, Yi&s . The statistical literature proposes
several solutions to this problem of ``errors-in-variables.''
Clutton-Brock (1967) suggested using weighted loss
functions with the weights taking account of the uncer-
tainty in Yi&s ,

CB1= :
m

i=1+s

( y(t i)&Yi)
2

wi
,

with

wi='2
|, i+'2

|, i&s \ dy(t i)
dYi&s+

2

. (5)

The standard deviation of the observation error, '|, i ,
must be known in advance (by multiple samples) and
independent of the process error. Here, we assume that
the observation error has a constant CV| known from
replicate measurements. The standard deviation can thus
be approximated by '|, i=CV|Yi . The last term in
Eq. (5), dy(ti)�dYi&s , is the derivative of the predicted
abundance y(ti) with respect to the initial condition
y(ti&s)=Yi&s . [Note that for y(ti)=(Ni , Pi), the weight
for state variable y j (ti) ( j=1, 2) is calculated by

w j
i ='2

|, j, i+(�Ni&s y j (t i), �Pi&s
y j (ti))

_
'2

|, 1, i&s 0
2

�Ni&s
y j (ti)

j
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_ 0 '|, 2, i&s&\�Pi&s
y (t i)+

and adapted similarly for higher dimensional state
variables].
Another loss function, similar to the negative log-like-
lihood, was also introduced by Clutton-Brock (1967),

CB2= :
m

i=i+s

0.5 \( y(ti)&Yi)
2

wi
+log(2?wi)+ ,

with wi defined as in Eq. (5).
Note that in error functions CB1 and CB2 the residual

is no longer the difference of the logs as suggested with
the lognormal error type. However, the property of the
lognormal error, that the standard deviation is propor-
tional to population size, is preserved. We have also
tested the lognormal versions of these equations, as
proposed by Clutton-Brock (1967) and by Carpenter et
al. (1994), but these functions converged very often to
strange solutions, maximizing the dependence on the
initial condition (dy(t i)�dYi&s) rather than minimizing
the residuals. They also converged much more slowly.
Using functions CB1 and CB2 thus simplifies the regres-
sion task without losing much generality with respect to
the error type.

In sum, if the source of error in the data is assumed to
be observation error only, the function X 2

| must be used
as a regression criterion. If it is thought that process error
only is present, the criterion X 2

& must be used. And if both
errors are present simultaneously, CB1 or CB2 can be
used. In our study of identifiability with artificial data, we
will consider all situations and we will assess empirically
the discriminative performance of all four error functions.

Fitting and Model Selection

The models are fitted to the data in a three-step proce-
dure that uses a genetic algorithm, a Levenberg-Marquardt
method, and a simplex algorithm combined with simulated
annealing (see Appendix A for all details).

The quality of adjustment of models to data is assessed
with the familiar sum of squares X2. This selection criterion
is identical to the regression criterion when regression is
done using X 2

| or X 2
& (Eq. (4)). The error functions CB1

and CB2 cannot be used directly for model selection
because the estimators use weightings that differ among
models (Carpenter et al., 1994). Since both models have
the same number of parameters, no adjustment for this
number is needed in the comparison. Therefore, we based
model selection for all error functions on the sum of
squared residuals of log-transformed values (4).
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To quantify the identifiability of the models, we calculate
the ratio X 2

c �X 2
f for each time series with X 2

c being the
sum of squares after the correct model is fitted and X 2

f the
sum of squares after the false model is fitted (i.e., a ratio
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FIG. 3. Quantile plots of fitting the models to the artificial data. X
wrong model, and the curves are the cumulative distributions of the ratio
error function X 2

& ,- - - -: error function CB1;���: error function CB2. CV
deviation of the process error with which the data have been created. The
of ; that is used to have 950 confidence of not having misidentified the

smaller than one indicates that the correct model has
been identified). The cumulative distribution curves of
these ratios (X 2

c �X 2
f on the x-axis, the quantile on the

y-axis) give a visual representation of the selection
performance of the different types of error functions (see
Fig. 3): the height at which the curve hits the vertical line
through x=1 gives the probability of selecting the wrong
model (misidentification). Therefore, an error function
whose curve crosses this line at a higher y-value is better
than an error function whose curve crosses this line
lower. It should be noted that this method of computing
the probability of misidentification requires that the
correct model be known and is used here to evaluate the
candidate error functions for eventual use on real data,
but the method cannot be used directly with real data.

Parameter Estimation

Before we try to fit our six-parameter models it should
be verified that the problem is well defined, in the sense
that parameters are uniquely identifiable if the state
variables are known with arbitrary precision and arbitrary
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resolution in time (Walter, 1987). Under this assumption,
the derivatives of any order ( y* , y� , etc.) are known and
differentiating Eq. (1) (with logistic prey growth and our
two functional response functions) two more times
the error after fitting the correct model, X 2
f is the error after fitting the

2
c �X 2

f for the different error functions:������: error function X 2
| ;������:

he coefficient of variation of the observation error and _ is the standard
hed straight lines in (c) show for error function X 2

& the estimation process
del (see the text for more details).

results in six equations with six unknown parameters. It
can be shown (Jost, 1998) that, in both models, this
algebraic system has a unique solution and thus our six
parameters are identifiable.

Since system stability is of much interest in ecosystems
(return time after perturbations, persistence in stochastic
environments) we will assess how well we can estimate
the local stability of the nontrivial equilibrium with the
parameters obtained from the fitting. Stability is measured
by &Re(*), with * being the dominant eigenvalue of the
community matrix (the Jacobian at the equilibrium point).
This eigenvalue has been calculated analytically (to reduce
numerical roundoff errors) before plugging in the
estimated or correct parameter values. We will plot the
cumulative distribution of the ratios, |Re(*e)�Re(*c)|,
with *e the dominant eigenvalue for the estimated
parameters and *c the dominant eigenvalue for the
correct parameters. The steepness of this curve indicates
the variation in the estimation of stability and, if the
curve passes through the point (1.0, 0.5), then there is
no deviation from the expected median.

The quality of the individual parameter estimates will
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be assessed by computing their coefficients of variation
from fitting the correct model to the five replicated time
series (with each error function and for each parameter
set). These CVs are computed either with the empirical



mean or with the true parameter value taken as the
mean. Averaging the CVs over all parameter sets will
give a general idea of the quality to be expected with
this type of fitting and data.

ANALYSIS AND RESULTS

A first comment concerns the numerical efficiency of
the algorithms. The Levenberg-Marquardt search worked
fast and efficiently close to the optimum (compared to the
simplex algorithm), but it often failed when the starting
values obtained with the genetic algorithm were far from
the optimum. In these cases, the simplex algorithm usually
found the basin of attraction much faster. The combination
of both algorithms almost always ensured convergence to
the optimum (visual control of the fit).

Model Identification

Figure 3 shows the cumulative distributions of the
ratios X 2

c �X 2
f for all error functions and noise levels. At

low noise levels (CV=0.05, _p=0.05) we see that the
error functions X 2

| , X 2
& , and CB2 led to less than 50

misidentifications, while CB1 had about 150 erroneous
identifications. Therefore, we did not use the error func-
tion CB1 at the higher noise levels (CV=0.1, _p=0.1).
At this higher noise, the error function X 2

| still had less
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FIG. 4. Four error functions vs parameter values for the example of a
vertically to put their minima all at the same height. For this reason we pu
to permit comparison. Patterns are the same as in Fig. 3. Actual paramete
indicated by an arrow.
than 50 wrong identifications, while the error function
X 2

& had up to 100 and the function CB2 performed even
worse. Therefore, we concluded that the error functions
CB1 and CB2 are not useful for model selection, probably
because the function that is minimized and the model
selection criterion are not the same. If we want 950

confidence in the identification with error function X 2
& ,

then there can be at most 50 wrong identifications.
From Fig. 3 we can estimate a ; such that the probability
P[X 2

c �X 2
f >;]=50. This is done by drawing a horizontal

line at the 950 level and projecting the intersection point
with the distribution curve onto the x-axis (illustrated in
Fig. 3c). Applied to real data with similar characteristics
(dynamics, length, errors) this means that we get 950

confidence of not having misidentified the model by
requiring that the ratio of better fit to worse fit is smaller
than 1�; (since P[X 2

f �X 2
c<1�;]=P[X 2

c �X 2
f >;]), at

the cost of not selecting a model when this ratio is too
close to 1. In this study 1�;=0.95.

Parameter Estimation

Figure 4 shows the sensitivity of all four error func-
tions to variations of one parameter at a time (fixing the
others at the values with which the time series was
created) for the example of a ratio-dependent data set
with high noise (CV=0.1, _=0.1). We see that they are
all quite unbiased with mostly symmetric error functions.
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ratio-dependent time series with large noise. The curves were shifted
t no label on the y-axis, but the scale between the curves was preserved
rs are r=1.29, K=900, :=4.7, h=0.172, e=0.207, +=1.01. They are
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FIG. 5. Quality of the estimated local stability: cumulative distributio
by the real part of the correct dominant eigenvalue Re(*c). Thus, curves
Line patterns are the same as in Fig. 3. The dots indicate for each error f

The observation error X 2
| always gave the narrowest

function, often asymmetric and with error increasing
very fast with distance from the true parameter value
[the steepest increase occurs if a too efficient predator
(high : and e or low h, +, and r) drives the system to
extinction]. This illustrates why we needed a genetic
algorithm to find initial parameter estimates within the
basin of attraction of the optimal parameter values. But
once this basin is found, convergence with the simplex
algorithm or the Levenberg-Marquardt method is very

TABLE 1

The Medians of the Coefficients of Variation for the Fitted Parameters o
the Empirical Mean or with the True Parameter Values Taken as the M
Estimated Dominant Eigenvalues, _* (the Medians of the True Dominant E
Parameter Sets)

CVr CVK CV:

Prey-dep.
X 2

| 0.17 (0.22) 0.094 (0.12) 0.42 (0.80)
X 2

& 0.20 (0.20) 0.083 (0.098) 0.47 (0.61)
CB2 0.24 (0.25) 0.081 (0.097) 0.53 (0.71)

Ratio-dep.
X 2

| 0.12 (0.12) 0.10 (0.10) 0.40 (0.57)
X 2 0.20 (0.23) 0.17 (0.18) 0.46 (0.57)

Model Selection from Time-Series
&

CB2 0.18 (0.18) 0.16 (0.18) 0.47 (0.51)

Note. All values are calculated from the results of fitting the correct mode
The first column indicates the error function that was minimized.
of the ratios of the real part of the estimated dominant eigenvalue Re(*e)
ssing on the right of the point (1, 0.5) show overestimation of stability.
tion the mean of the ratios, while the triangles indicate the medians.

the 20 Different Parameter Sets for Each Model, Computed Either with
n (in Parentheses), and the Medians of the Standard Deviations of the
values Are &0.053 and &0.14 for the Prey-, Respectively Ratio-Dependent

CVh CVe CV+ _*

0.60 (0.60) 0.56 (0.73) 0.53 (0.82) 0.029
0.96 (0.73) 0.52 (0.52) 0.41 (0.52) 0.027
0.63 (0.65) 0.49 (0.52) 0.42 (0.46) 0.025

0.30 (0.28) 0.58 (0.82) 0.47 (0.76) 0.033
0.54 (0.48) 0.78 (0.81) 0.64 (0.70) 0.039

fast. CB1 and CB2 show the flattest error functions,
indicating slower convergence rates of the optimization
process. This same picture emerged with other data sets
and models.

From direct comparison of the dominant eigenvalues
of the nontrivial equilibrium with the estimated and the
correct parameters, strong differences between the error
functions emerge. Figure 5 shows the cumulative distri-
bution functions of the ratios of the dominant eigen-
values for all estimated parameter sets, error functions,
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0.41 (0.39) 0.65 (0.70) 0.52 (0.56) 0.031

l to the data with high observation and process error (CV=0.1, _p=0.1).



and models. The steepness of each curve is approximately
the same, meaning that each error function shows the
same variation in the estimation of local stability, although
there seems to be a slightly smaller variation with ratio-
dependent data. With respect to deviation from the
expected median, we see that error function X 2

| (fitting
the whole trajectory) performed overall best, followed by
CB2 . Error function X 2

& always overestimated stability.
Table 1 reports for each parameter the median of the

coefficients of variation CV% (computed over the different
sets of true parameter values for each combination of
correct model and error function, using the fits to data
with high noise only). We computed the medians rather
than the means because there were a few datasets where
the estimated parameters K and a differed from the
correct ones by one to three orders of magnitude. These
outliers completely distorted the mean values. The impor-
tant point to note in Table 1 is that these values are
generally high (10�900), indicating that even with five
replicates, there remains much uncertainty in the estimated
parameters. The estimation of K and r were the most
reliable, and all other parameters had median CVs
above 400.

DISCUSSION

We addressed the problem of model selection in this
article by fitting dynamic models to predator�prey time
series that contained both observation and process errors.
Fitting assuming observation error only (error function
X2

|) allowed for the more reliable model identification with
both noise levels. Figure 3 suggests that identification
should remain possible even with noise levels slightly
higher than CV=0.1 and _p=0.1 or with some outliers
in the data.

Fitting assuming process error (function X 2
&) leads to

less reliable identification. Identification worked well
with the low noise level. But for the higher noise level, the
ratio of the lower error by the larger error should be
below 0.95 to have 950 confidence in not having mis-
identified the model. Higher noise levels or outliers in the
data will further aggravate the reliabilityof model selection.
The error functions CB1 and CB2 that were supposed to
take both observation and process error into account gave
unreliable identification results, probably because the func-
tion that is minimized is not identical to the selection
criterion, as this is the case with error functions X2

k .
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Preference must be given to functions X 2
k (or more general

maximum likelihood approaches and information criteria
when comparing models of different complexity) that use
for regression and selection the same function.
Comparing our results with the work of Carpenter et
al. (1994), we can notice that model selection is more
reliable for the continuous models studied here than for
the discrete models studied by these authors. However,
Carpenter et al. fitted the prey equation only (using
predator data as input into this prey equation). There-
fore, they only selected for agreement with the prey
dynamics, while we selected for agreement with both prey
and predator dynamics. These authors also stated that
manipulation of the biological system is necessary to
identify models. Our analyses confirm that it is necessary
to have initial conditions far from the equilibrium state,
in order to generate strong dynamics of the system on its
way back to the equilibrium. This can be accomplished in
natural lakes by stocking or in laboratory cultures (batch
or chemostat) by using low initial populations.

There is an interesting difference between the two
models: the ratio-dependent time series were always
more reliably identified, in the sense that the difference
between the sum of squares X2 after fitting both models
was on average larger with ratio-dependent data than
with prey-dependent data (pushing the cumulative distri-
bution functions to the left in Fig. 3). It seems that the
ratio-dependent model is more flexible, adjusting itself
more easily and with smaller residuals to given data.
Carpenter et al. (1994) had found the same difference
(their Fig. 3B and 3E). This raises the problem that real
prey-dependent time series are more often wrongly iden-
tified as being ratio-dependent than the other way round.

A most interesting observation is that the error func-
tions X 2

| and X 2
& made simultaneous wrong selections in

only 2 of the 400 time series. Therefore, for the type of
dynamics and the length of time series that we analysed,
we can conclude that the most reliable model identifica-
tion is obtained by fitting both error functions and by
accepting a selected model only if both functions give the
same result. Unfortunately, for longer time series that
describe sustained or slowly decreasing oscillations, accu-
mulated process error diverts the system from the deter-
ministic description and fitting the whole trajectory can
become unreasonable. Harrison (1995) encountered this
problem because the time between peaks in Luckinbill's
data is irregular (see his Fig. 6c), probably because of
process error.

Regarding the performance of the error functions with
respect to individual parameter identification, all error
functions give parameter estimates close to the actual
values (Fig. 4). However, Table I (calculated CVs from the
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replicated time series) shows that only parameters r and K
are estimated with high precision, all others having large
CVs. Assessing the quality of the system stability estimate
with the method of the dominant eigenvalue (Fig. 5) shows



that, at the low noise level, this estimation is quite
reliable for all error functions but with the higher noise
level, there is a large variation with a considerable devia-
tion from the expected median (Fig. 5). The error functions
X2

& and CB1 overestimate local stability (the estimated
dominant eigenvalue * is too negative).

In fact, there is no general statistical solution to the
problem of fitting nonlinear models to data that have
both observation and process error. As stated by Pascual
and Kareiva (1996), the practical solution is often to fit
as if there were only one type of error in the data. If
neither of the error types should be neglected we suggest
using both types of fitting and basing model selection on
the joint result. This conclusion will probably remain
valid for systems that do not fit into the framework of this
study (e.g., systems that have only one state variable,
unstable dynamics, or more available data points), but in
these cases identifiability should again be verified by a
simulation analysis similar to the one presented in this
paper. It should be noted here that the error function X 2

&

could probably be improved by taking into account not
only the error s steps ahead but also the errors at inter-
mediate time steps. The distribution of the accumulated
process error at each step can be computed numerically
and can be used in a likelihood criterion that would serve
for regression and selection. Similarly, the errors-in-
variables method (with the initial conditions as the
independent variables) could help to construct a likelihood
function that takes both process error and observation
error into account. It remains to be tested whether the
additional numerical costs can be justified by higher
reliability of model selection and parameter estimation.

There exist alternatives to the way we addressed the
problem of model selection in this article. In particular,
one could take a versatile model that is either prey-
dependent or ratio-dependent, depending on a specific
parameter value (e.g., using the models of Hassell and
Varley (1969) or DeAngelis et al. (1975)), and then
directly estimate this parameter. However, estimating it
by fitting the whole model (as done in this paper) will
also result in a large uncertainty of the estimate, thus
reducing the selective power of this approach. Using
Bayesian approaches to estimate posterior distribution
functions of this parameter is another possibility (Stow et
al., 1995), but they require sophisticated multidimen-
sional integration techniques. The direct comparison
performed in this paper is more parsimonious and has
the additional advantage of choosing between models

Model Selection from Time-Series
that can be incorporated into complex food webs (Arditi
and Michalski, 1995; Michalski and Arditi, 1995).

Generally, goodness of fit as a criterion for model
selection has its limitations, as indicated by the existence
of the already mentioned universal differential equations
(Rubel, 1981) or by the classical demonstration of Smale
(1976) that simple models of several competing popula-
tions can produce any type of qualitative dynamics.
While our analysis shows that gross differences such as
prey dependence versus ratio dependence can be iden-
tified, a preliminary study with three different general
predator-dependent functional responses (that have all
three instead of the two parameters in this study) resulted
in up to 500 wrong identifications from data of similar
quality and quantity as the ones used in this study.

Our general conclusion is that, to address the question
of identification of dynamic predator�prey models, the
scientist should first try to reduce observation and�or
process error as much as possible. If both errors remain
important, then model selection is most reliable if both
observation error fit and process error fit select the same
model. To perform this identification with models that
are different from the ones analysed in this paper another
simulation analysis should be done to validy the inference
process. Parameter estimates obtained by these methods
are characterized by large coefficients of variation. The
data should also exhibit dynamics of much higher
amplitude than the errors in the data. This can be
obtained either by low initial conditions in laboratory
experiments or by perturbation of natural systems.

APPENDIX A

Algorithmic Details

There does not exist much customizable software that
allows fitting differential equations to data. Fitting and
visualization are usually separate steps in most software,
which further slows down the fitting process. Therefore
we programmed the whole procedure directly in C++
to create an application that allows immediate visual
control of the fitted model. This proved to be an indispens-
able tool to analyze large numbers of data sets. (The
software can be obtained from the first author upon
request; it requires a Power Macintosh.)

In a first step, the time series data were used to deter-
mine upper and lower bounds of the parameters. These
bounds were found by first computing a rough estimate
of each parameter. For r, a(:), +, and h, this was done by

335
an analogy with exponential growth:

y* =ry � r=
log( y(ti+1))&log( y(ti))

ti+1&t i
.



For example, a rough estimate of the maximal prey
growth rate r was obtained by calculating

max
1�i�m&1 {

log(N i+1)&log(Ni)
ti+1&ti = .

The parameter K was roughly estimated as the maximal
prey abundance. These estimates were then multiplied by
some constants to get upper and lower bounds. The
constants were calibrated with the artificial data sets in
such way that the intervals contained the real parameters
that had generated all these data sets. e was restricted to
the ecologically reasonable interval (0, 1).

In a second step, a genetic algorithm (GAlib 1.4.2 from
http:��lancet.mit.edu�ga�) was used to search within these
bounds, with population size 50, mutation rate 0.01,
crossover rate 0.1 and 400�600 generations. In this step
and the following step, the solutions of the ordinary dif-
ferential equations needed to calculate X 2

k were simulated
with the adaptive stepsize fifth-order Runge�Kutta method
odeint from Press et al. (1992).

In a third and final step, starting from the parameter
values found by the genetic algorithm, the fitting was
completed by using repeatedly a Levenberg-Marquardt
method and the downhill simplex method of Nelder and
Mead combined with simulated annealing (routines
mrqmin and amotsa from Press et al., 1992) until the fit
could not be improved any further. The computation
of the gradient in the Levenberg-Marquardt method,
i.e., the derivation of the solution of an ordinary differ-
ential equation with respect to the parameters, requires
the simulation of a system of 20 (or more) coupled
ordinary differential equations (Pave� , 1994, p. 509).
The trick is that the order of differentiation can be
inverted,

d
da

dy(t)
dt \=

d
da

f ( y(t))+=
d
dt

dy(t)
da

=:
d
dt

!(t),

and !(t) can be computed as the solution of a larger
system. The parameters were forced to remain within the
calculated intervals during the optimization (by blocking
the parameter in the Levenberg-Marquardt method or
by penalizing the error function in the simplex algorithm,
with a penalty that grows exponentially with increasing
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distance from the bound).
The stopping criterion for both algorithms was deter-

mined dynamically from the data set: let En be the error
at step n (expression X 2

k , CB1 , or CB2), % j
n the estimate
of parameter j at step n (1� j�p), and c=max1�i�m[Yi]
} CV } m } C (C being a constant, set to 10&8). Then the
algorithm was stopped if either

0�
En&En+1

En
�c

or

0� max
1�i�p }

% j
n&% j

n+1

% j
n }�c

(Seber and Wild, 1989). With simulated annealing, the
error En might actually increase at the beginning of the
optimization process. Therefore, this algorithm was not
stopped if the first expression became negative.

In sum, both models were fitted with each of the four
error functions to each of the 400 time series by the
following procedure: (1) Calculate upper and lower
bounds for the parameters, (2) run a genetic algorithm,
(3) use alternatingly and repeatedly the Levenberg-
Marquardt method and the simulated annealing simplex
algorithm with the stopping criteria above until the error
does not diminish any further.
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