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Abstract

Recognition of the microbial loop as an important part of aquatic ecosystems disrupted the notion of simple linear food chains.

However, current research suggests that even the microbial loop paradigm is a gross simplification of microbial interactions due to

the presence of mixotrophs—organisms that both photosynthesize and graze. We present a simple food web model with four trophic

species, three of them arranged in a food chain (nutrients–autotrophs–herbivores) and the fourth as a mixotroph with links to both

the nutrients and the autotrophs. This model is used to study the general implications of inclusion of the mixotrophic link in

microbial food webs and the specific predictions for a parameterization that describes open ocean mixed layer plankton dynamics.

The analysis indicates that the system parameters reside in a region of the parameter space where the dynamics converge to a stable

equilibrium rather than displaying periodic or chaotic solutions. However, convergence requires weeks to months, suggesting that

the system would never reach equilibrium in the ocean due to alteration of the physical forcing regime. Most importantly, the

mixotrophic grazing link seems to stabilize the system in this region of the parameter space, particularly when nutrient recycling

feedback loops are included.

r 2004 Elsevier Inc. All rights reserved.

Keywords: Mixotrophy; Marine food webs; Intraguild predation; Nutrient recycling; Food webs
1. Introduction

Since revision of the classic aquatic food web to
include the concept of the microbial loop (Pomeroy,
1974; Azam et al., 1983), the importance of microbial
interactions in aquatic food webs has become paradig-
matic (Sherr and Sherr, 1991; Holen and Boraas, 1995).
However, as data on microbial food webs has accumu-
lated, it has become clear that these systems are far more
complex than the loop structure originally proposed
(Fig. 1). One complicating factor that is receiving
increasing attention is the influence of mixotrophs—
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organisms that defy traditional trophic level classifica-
tion by both photosynthesizing and grazing.

Mixotrophy has some apparent advantages compared
to pure autotrophy or pure heterotrophy and appears to
be an important adaptation to life in planktonic habitats
(Laybourn-Parry, 1992). Field studies have demon-
strated that mixotrophy can increase access to growth-
limiting nutrients (Veen, 1991; Caron et al., 1993;
Nygaard and Tobiesen, 1993; Jones, 1994; Bockstahler
and Coats, 1993b; Arenovski et al., 1995; Holen and
Boraas, 1995; Li et al., 1999, 2000), carbon (Veen, 1991;
Bockstahler and Coats, 1993b; Jones, 1994) or other
growth factors (Bockstahler and Coats 1993b; Caron
et al., 1993; Jones, 1994). Mixotrophic algae are able to
sustain growth when they are mixed out of the euphotic
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Fig. 1. A schematic representation of the relationships between the

classical food chain (thick lines, Steele, 1974), the microbial loop (fine

lines, Fenchel, 1988), and mixotrophic interactions in marine

planktonic food chains. N; nutrient; Pl ; large phytoplankton; Pm;

medium phytoplankton; Ps; small phytoplankton; F ; flagellates; C;

ciliates; B; Bacteria; M; mixotrophs and Z; mesozooplankton.

Numbers refer to example references documenting linkages. 1,

Arenovski et al. (1995); 2, Sherr and Sherr (1994); 3, Bockstahler

and Coats (1993a, b); 4, Sanders and Porter (1988); 5, Kleppel (1993);

6, Stoecker and Capuzzo (1990); 7, Fessenden and Cowles (1994); 8,

Neuer and Cowles (1994); 9, Jeong (1994).
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zone by switching to phagotrophy (Bird and Kalff, 1989;
Bockstahler and Coats, 1993b). During periods of low
nutrient concentrations, phagotrophic behavior may
enable mixotrophic algae to survive in competition with
purely phototrophic organisms (Arenovski et al., 1995).
Conversely, mixotrophy in primarily heterotrophic
organisms may be a competitive advantage over pure
heterotrophic forms, since photosynthesis could enable
the survival of periods of reduced particulate food
(Bockstahler and Coats, 1993b) despite the lower
predation rates of the mixotrophs (Schnepf and
Elbrachter, 1992; Holen and Boraas, 1995; Rothhaupt,
1996a).

While mixotrophy is a very common nutritional mode
in aquatic systems (see review in Riemann et al., 1995),
empirical studies of the influence of mixotrophic
organisms upon aquatic food webs are difficult,
particularly in marine systems where field logistics often
limit the scope and duration of experiments. As such,
models of mixotrophic food webs may be a useful tool
for investigating the potential impact of mixotrophs on
these systems (Thingstad et al., 1996; Baretta-Bekker
et al., 1998; Stickney et al., 2000). While the most
studied mixotrophic eukaryotes in planktonic marine
microbial food webs are plastid-retaining ciliates (Black-
bourn et al., 1973; Jonsson, 1987; Stoecker et al., 1987;
Stoecker and Michaels, 1991), their feeding ecology is
complex (Stoecker and Silver, 1990; Stoecker, 1991).
The simplest mixotrophic strategy appears to be that of
photosynthetic dinoflagellates. As such this study
focuses on development and analysis of a general model
that includes mixotrophic behavior and we will study it
in particular for photosynthetic marine dinoflagellates.
Moreover, there is a current interest in this group
because their importance as grazers may have been
grossly underappreciated (Bockstahler and Coats,
1993a, b; Li et al., 1996; Stoecker et al., 1996).

Many photosynthetic dinoflagellates thought to be
important as grazers, such as Gyrodinium sp., Gymno-

dinium sp., and Ceratium sp., are large ð440 mmÞ: As
such we will assume that our model mixotroph has a
diameter of at least 40 mm: This size is similar to that of
ciliates known to be important grazers (Verity and
Langdon, 1984); the second grazer in our model will,
therefore, be a ciliate (hereafter, referred to as herbivore)
with a spherical diameter of 40 mm: The prey for these
grazers will be a photosynthetic flagellate ð10 mm;
hereafter, referred to as autotroph) with whom the
mixotroph will also compete for dissolved nutrients.
Since mixotroph and herbivore are of similar size there
is no grazing link between the two organisms, they are
pure competitors.

Two biological considerations can guide the choice of
parameters for the model. First, because body size is an
important factor determining many ecological rates
(Peters, 1983), the scaling relationship between the
autotroph and mixotroph suggests that the maximum
nutrient uptake rate and the half-saturation constant of
the autotroph should be greater than and less than those
of the mixotroph, respectively; these relationships are
commonly seen in the ocean where smaller cells tend to
have higher maximum nutrient uptake rates (Harris,
1986) and smaller half-saturation constants for nutrient
uptake (Valiela, 1995) than do large cells. Second, the
inherent trade-off between phagotrophy and autotrophy
should make mixotrophs inferior competitors relative to
phagotrophic and phototrophic specialists. As stated
above, this pattern is seen in aquatic systems, with
predation rates of mixotrophs being lower than those of
pure phagotrophs (Schnepf and Elbrachter, 1992; Holen
and Boraas, 1995; Rothhaupt, 1996a; Raven, 1997).
These relationships between the autotrophs, mixotrophs
and herbivores will be used as assumptions in the model.
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In this study, we will first present the development of
the model and derive general conditions for the existence
of a non-trivial equilibrium. This information, together
with the parameters estimated to represent mixotrophic
dinoflagellates, will then be taken to explore analytically
and numerically (Monte Carlo simulations) the influ-
ence of the mixotrophic link on existence and stability of
an equilibrium, both for general parameter values and
for the estimated parameters. This will be done with and
without the recycling of nutrients, thus testing for
combined effects of mixotrophy and recycling.
2. The mathematical model

We study a chemostat-like model with four state
variables: dissolved nutrient ðNÞ; nutrient in autotrophs
ðPÞ; nutrient in herbivores ðZÞ and nutrient in mixotrophs
ðMÞ (see Fig. 2). N represents a pool of limiting nutrient
and is modeled as a conservation equation that has a
stable state in the absence of biotic uptake and release
ðdN

dt
¼ In � lnNÞ: We assume the amount of nutrients in

autotroph, mixotroph or herbivore biomass to be a fixed
mean fraction g of their total biomass. Thus, modeling the
biomass or only the nutrient in the biomass is a difference
in scaling only and we will follow the latter approach. A
general model for autotrophic organisms (autotrophs or
mixotrophs) with density uðtÞ is therefore
du

dt
¼ rðNÞu � ðlu þ ruÞu;

where lu is a loss of nutrients stored in organism biomass
due to washout or emigration of autotrophs and ru is
either loss due to direct recycling to the nutrient pool N

or indirect recycling through a detrital compartment.
We do not include the detrital compartment as a state
variable to keep the model simple. This is equivalent to
instantaneous detrital regeneration and is a common
assumption in plankton models (Franks and Walstad,
1997; Edwards et al., 2000). Note that any non-
Fig. 2. Flow diagram of the mathematical model.
assimilated ingested nutrient is accounted for in the
parameters lu and ru; thus no assimilation efficiency has
to be added to the model. Nutrient uptake rðNÞ is
assumed to be controlled solely by the external level of
available nutrients and modeled as a Monod type
function (e.g., DiToro, 1980; Auer et al., 1986). The
predation on autotrophs by mixotrophs and herbivores
is modeled as a Lotka–Volterra interaction. Non-linear
functional responses are more realistic for both hetero-
trophic and mixotrophic organisms (Rothhaupt, 1996b),
but the Lotka–Volterra form may serve as a reasonable
approximation and was chosen to keep the model as
simple as possible. We do not include a grazing link
between mixotrophs and herbivores because of their
similar size. All these considerations lead to the model

dN

dt
¼ In � lnN � f

N

kp þ N
P � g

N

km þ N
M

þ rpP þ rmM þ rzZ; ð1Þ

dP

dt
¼ f

N

kp þ N
P � hPM � ePZ � lpP � rpP; ð2Þ

dM

dt
¼ g

N

km þ N
M þ hPM � lmM � rmM; ð3Þ

dZ

dt
¼ ePZ � lzZ � rzZ: ð4Þ

A list of the state variables, parameters and their units is
given in Table 1. Note that, apart from the non-linear
nutrient uptake function and the recycling of nutrients,
our system represents a subsystem of the one explored
analytically by Thingstad et al. (1996) and most of their
results apply also to our system. However, they had a
different target organism in mind (bacterivorous mixo-
trophs) and we will focus in our study on the influence of
mixotrophic behavior and recycling on the existence and
stability of an equilibrium.

The model must fulfill several assumptions in order to
describe the behavior of our target mixotroph:

1. The autotrophs should be the better competitors for
nutrient than the mixotrophs, thus

ðlp þ rpÞkp

f � ðlp þ rpÞ
o

ðlm þ rmÞkm

g � ðlm þ rmÞ
ð5Þ

(see, e.g., DeAngelis, 1992 or Holt and Polis, 1997).
As described in the previous section, the maximum
nutrient uptake rate of the mixotroph is less than that
of the autotroph and the half-saturation constant of
the autotroph is smaller than that of the mixotroph,

gof and kpokm: ð6Þ

2. The herbivore is a better grazer on autotrophs than
the mixotroph,

hoe: ð7Þ
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Table 1

Summary of model parameters

Biological interpretation Unit Estimated range EAV CV

N Dissolved nutrient mmol N=m3

P Nutrients in autotrophs mmol N=m3

Z Nutrients in herbivores mmol N=m3

M Nutrients in mixotrophs mmol N=m3

In Nutrient inflow to the system mmol N=ðm3 dÞ 0.027–0.037 0.032 25%

ln Loss rate of nutrients d�1 0.0008–0.003 0.003 ?

lp Loss rate of autotrophs d�1 0–0.003 0 —

lz Loss rate of herbivores d�1 0.2–0.387 0.2 30%

lm Loss rate of mixotrophs d�1 0.2–0.387 0.2 30%

rp Recycling rate of autotrophs d�1 0–0.003 0 —

rz Recycling rate of herbivores d�1 0.2–0.75 0.3 50%

rm Recycling rate of mixotrophs d�1 0.2–0.75 0.2 50%

f Maximum nutrient uptake rate of autotrophs d�1 0.6–0.8 0.7 15%

kp Half-saturation constant of autotrophs mmol N=m3 0.2–0.6 0.5 25%

g Maximum nutrient uptake rate of mixotrophs d�1 0.41–0.5 0.5 20%

km Half-saturation constant of mixotrophs mmol N=m3 0.2–0.6 0.6 20%

h Maximum ingestion rate of mixotrophs m3=ðmmol N dÞ 0.88–1.32 1.0 25%

e Maximum ingestion rate of herbivores m3=ðmmol N dÞ 2–3 2.7 20%

The model parameters, their biological interpretation, units, estimated average (EAV) and the quality of the estimates, given as the coefficient of

variation (CV) with the estimated average taken as the expectation value.
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3. In order for the mixotroph or the autotroph to grow
autotrophically without the presence of the other and
with nutrients available in high concentration, we
derive the conditions

lm þ rmog; ð8Þ

lp þ rpof : ð9Þ

2.1. The equilibrium and some of its properties

This system has a unique non-trivial equilibrium
ðN%;P%;M%;Z%Þ (see Appendix A). It is positive if
the parameters fulfill the following conditions:

0o
A

eh
o

g

h
and GofoH if hlzoelm ð10Þ

or G4f4H if hlz4elm ð11Þ

with

A ¼ eðlm þ rmÞ � hðlz þ rzÞ;
B ¼ eg � ðeðlm þ rmÞ � hðlz þ rzÞÞ ¼ eg � A;

H ¼ ðAkm þ BkpÞðeðegIn � Aðkmln þ InÞÞ þ Bðrplz � rzlpÞÞ
ABkmlz

;

G ¼ ðAkm þ BkpÞðelm � hlzÞðlp þ rpÞ
eAkmlm

þ hlz

elm
H: ð12Þ

Washout from mixotrophs and from heterotrophs being
approximately the same, lmElz; together with the
assumption hoe (Eq. (7)), indicates that the condition
hlzoelm (Eq. (10)) is the biologically plausible one in our
system.
Since A
eg

¼ ðlmþrmÞ
h

� ðlzþrzÞ
e

� �
is restricted to the interval

ð0; g
h
Þ it is evident that there must be a balance between

the loss-to-gain ratios from the mixotroph and herbi-
vore compartments. High herbivore predation e and
mixotrophic nutrient uptake g increase the region over
which this balance occurs; a larger e also enlarges the
interval for f (in Eqs. (10) or (11)). In relation to the
conditions imposed on our model we may remark that
condition (8) ensures that A

eg
og

h
; while condition (7) with

the assumption of approximately equal outwash and
recycling rates of mixotrophs and herbivores ensures
0oA; making the first inequality in Eq. (10) biologically
plausible.

If the condition lp ¼ rp ¼ 0 (no washout or recycling
from the autotrophs) is imposed on Eq. (12), then we get
G ¼ hlz

elm
H: In such conditions, Eqs. (10) and (11) can be

reformulated as

hlz

elm
H o

ð4Þ
f o

ð4Þ
H:

The necessary conditions for the existence of an
equilibrium, hlz

elm
HoH with condition (10) and hlz

elm
H4H

with condition (11), are then granted. If lp40 and rp40
then the existence interval of f becomes smaller:
recycling and washout from autotrophs make existence
of this system less likely (in Eq. (12), condition (10)
constrains the first term of G to be positive. Further
assuming that the term ðrplz � rzlpÞ in H is, as the
difference of two similar parameters, very close to zero,
the difference H � G becomes thus smaller than with
lp ¼ rp ¼ 0). However, lp and rp are small compared to
grazing (Table 1) and they cause considerable complica-
tion in the analysis of the subsystems (see below).
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Fig. 3. Regions of the parameter space where the equilibrium exists; (a) f ; h-space, (b) f ; In-space. Parameters above the two lines result in a negative

mixotroph equilibrium abundance, while below the two lines the same is true for the herbivore equilibrium biomass. An % marks the estimated

parameter values.
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Therefore, we will assume that lp ¼ rp ¼ 0: Note that in
this case condition (5) is automatically fulfilled whenever
condition (8) holds. Ecologically, this is equivalent to
the reasonable assumption that all autotroph loss is due
to grazing (Sharp, 1977; Ward and Bronk, 2001).

For the parameters in Table 1, the existence of an
equilibrium as a function of f and either the mixo-
trophic grazing link h or enrichment of the system In was
explored numerically. The size of the parameter region
with positive equilibria is independent of mixotrophic
grazing activity h (the difference H � G may in general
increase or decrease, but in the plotted neighborhood of
the estimated parameters it only increases by factor 2),
but with an increasing mixotrophic grazing rate h the
autotrophic growth rate f must also increase to avoid
the herbivore going extinct (Fig. 3a). This implies that
the mixotrophic grazing link has a weak influence on the
existence of an equilibrium in a realistic region of
parameter space. In contrast the nutrient input In

strongly influences the size of this parameter region
(Fig. 3b): as when In increases, the parameter region also
increases. In may be interpreted as an enrichment
indicator; the effect of changing In is similar to that of
changing the carrying capacity in models where the
dynamics of the lowest trophic level follow a logistic
growth equation. As such, enrichment enlarges the
region in parameter space where equilibria may exist.

It can also be shown that while the system without
recycling may exist, the system with full recycling and
washout from the nutrient pool only (no washout of
autotrophs, mixotrophs, and herbivores) has no equili-
brium.

2.2. Subsystems, their equilibria and their stability

We study the subsystems N � P � Z and N � P � M

for two reasons: first, the subsystems can give a better
understanding of the functional roles of the herbivore
and the mixotroph in the whole system. Second, in the
case of instability of the whole system, the invasion
criteria of these subsystems (see Appendix B) will
indicate if there is unstable coexistence of all four
trophic species or if one of them might go extinct. For
this analysis, let rp ¼ lp ¼ 0 (as justified in the previous
section).

The system without mixotrophs: Consider system
(1)–(4) without mixotrophs

dN

dt
¼ In � lnN � f

N

kp þ N
P þ rzZ; ð13Þ

dP

dt
¼ f

N

kp þ N
P � ePZ; ð14Þ

dZ

dt
¼ ePZ � lzZ � rzZ: ð15Þ

This is a simple 3-level food chain with a unique positive
(stable or unstable) equilibrium. If we consider the
subsystem without recycling ðrz ¼ 0Þ; we get a globally
stable food chain (see Appendix A). This food chain
would remain stable if we allow for washout from
autotrophs ðlpa0Þ:We see in this example that recycling
ðrza0Þ can lead to unstable equilibria.

The system without herbivores: Consider system
(1)–(4) without herbivores

dN

dt
¼ In � lnN � f

N

kp þ N
P � g

N

km þ N
M þ rmM; ð16Þ

dP

dt
¼ f

N

kp þ N
P � hPM; ð17Þ

dM

dt
¼ g

N

km þ N
M þ hPM � lmM � rmM: ð18Þ

This system has a unique equilibrium (stable or
unstable) that is positive if the autotrophic activity of
the mixotrophs is small compared to losses by washout
or recycling

rm þ lm4g
N%

3;Z

km þ N%
3;Z

ð19Þ

(see Appendix A, Eq. (A.2)). More interesting is that the
mixotrophic grazing allows coexistence of all 3 species.
To see this, consider the above system without the
mixotrophic interaction hPM and where we allow again
washout and recycling from autotrophs (otherwise the
autotrophs follow a positive or negative exponential
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growth, since N% may be determined from the
mixotrophic equation alone).

dN

dt
¼ In � lnN � f

N

kp þ N
P � g

N

km þ N
M

þ rpP þ rmM;

dP

dt
¼ f

N

kp þ N
P � lpP � rpP;

dM

dt
¼ g

N

km þ N
M � lmM � rmM:

The autotroph and the mixotroph equation each
determine a value for the nutrients at equilibrium. This
contradiction is most likely to be resolved by competi-
tive exclusion of either P or M; i.e., the more efficient
consumer (the one that can exploit nutrients to a lower
level, here P because of condition (5)) will survive.
3. Parameterizing the model and simulation setup

We use the model developed above to study: (1) the
effect of mixotrophic behavior on the existence of
equilibria and on their stability, and (2) the link between
this relation and recycling of nutrients. The question
about existence can be studied analytically, but the
analytical expressions for the stability analysis of the 4-
level system become unwieldy. Therefore, we use a
Monte-Carlo approach to study existence and stability
by creating large numbers of random parameter sets
that create positive equilibrium values of all state
variables, both with and without the mixotrophic link
or recycling, and that fulfill the minimal conditions (6)–
(9). The effects of the mixotrophic grazing link and of
recycling are then examined by comparing the stability
of systems with and without the mixotrophic link and of
systems with and without recycling for each random
parameter set. The random parameters are chosen in
two ways: (a) first estimating expectation and standard
deviation of all parameters to represent an open ocean
planktonic system with mixotrophic dinoflagellates (see
Appendix C for details on the estimation and Table 1 for
the values), which are then used to create lognormally
distributed random parameter sets around these esti-
mates (Limpert et al., 2001), and (b) with a uniform
distribution from the interval (0,3) (note that this
interval includes the estimated ranges of all the
parameters). The lognormal random parameters are
created by taking the estimated value as the mean with a
constant coefficient of variation (CV ¼ standard devia-
tion divided by the mean) as a measure of how exact this
mean value has been calculated (a high CV indicates a
high uncertainty of the value). Compared to normally
distributed random variables the lognormal distribution
has the advantage of only producing positive values.
This approach also constrains the Monte Carlo para-
meter sets to a distribution reminiscent of the often
quoted ‘‘rule of thumb’’ that parameter values are 1

2
to 2

times their average parameter values (e.g., Fasham et al.,
1990). The lognormally distributed random parameter
sets will also be referred to as ecologically relevant
parameter sets or the ‘real system’ since they are near the
values estimated from the literature. By using these two
types of random parameter sets, we will gain some
insight as to whether the estimated parameters are in a
region of the parameter space that has special properties
when compared to parameters that were chosen by
chance alone.

Stability was determined by applying the Routh–
Hurwitz criteria (see, e.g., Edelstein-Keshet, 1988) to the
analytical form of the community matrix (the Jacobian
at the equilibrium), thus eliminating numerical errors
that can occur when calculating the eigenvalues directly
from the parameterized (numerical) community matrix.
4. Simulations and results

In the first part of this section we will discuss the
general dynamics of the mathematical system while in
the second part the specific questions regarding mixo-
trophy and recycling will be addressed in detail. As
justified previously we will set rp ¼ 0 and lp ¼ 0 for all
simulations of this section.

4.1. General dynamic behavior of the system

With the estimated parameters (see Table 1) the
model shows a stable equilibrium with
ðN%;P%;M%;Z%Þ ¼ ð0:45; 0:19; 0:048; 0:11Þ (see Fig.
4 for a simulation). The subsystem N � P � M also
exists (stable) with ðN%

3;Z;P%
3;Z;M%

3;ZÞ ¼ ð0:15; 0:30; 0:16Þ
as well as the subsystem N � P � Z with
ðN%

3;M ;P%
3;M ;Z%

3;MÞ ¼ ð0:68; 0:19; 0:15Þ (units are always
mmol N=m3).

After pulse perturbations of the full system by a five-
fold increase or decrease of the state variables from the
equilibrium values (all possible combinations of in-
creased and decreased state variable initial conditions
were tested by simulation) the system always returned
with damped oscillations to the equilibrium. In contrast,
with ten-fold increases or decreases, extinction of one
population (Z) was occasionally observed. Moreover, in
some simulations a long lasting depletion of the
herbivore population to very low levels was observed
(e.g., with starting points being five times the equili-
brium values). This behavior was caused by the
herbivores having only one food source and thereby
overgrazing the autotrophs. The herbivores remained
scarce until the autotroph population recovered;
this recovery was delayed by the grazing activity
of mixotrophs on autotrophs. These low levels of
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herbivores (that may be forced arbitrarily close to 0)
also show that our system is not persistent (sensu
Yodzis, 1989). However, mutual invasibility (see below
and Appendix B) is possible in our system, i.e., if either
autotroph, mixotroph or herbivore go extinct locally in
the ocean then the system will settle to a new equilibrium
where invasion by the lost trophic species is possible.
Therefore, our local model in the dynamic mixing
environment of the open ocean will allow for long-term
coexistence of all levels.

The dynamic behaviors of the system with the random
parameter sets are summarized in Table 2. We see that
most parameter sets that fulfill the minimal conditions
(6)–(9) show a stable equilibrium (99.9% for the
lognormally distributed parameter sets, 92% for the
uniformly distributed parameter sets). The remaining
parameter sets with an unstable equilibrium show
extinction of the herbivore and subsequent stabilization
of the 3-species subsystem N � P � M (determined by
numerical simulation) for all of the lognormally
distributed parameter sets and for all except 3 of the
uniformly distributed parameter sets (1 with recycling, 2
without recycling). These 3 parameter sets result in
unstable coexistence of all four state variables. Calcula-
tion of their Lyapunov exponents (with the algorithm
described in Wolf et al., 1985) showed that the dynamics
Table 2

Monte Carlo simulations 1

Lognormal distribution

Number of parameter sets: 200,000

Recycling N

Fulfill min. conditions 45367 5

All systems stable 45292 5

Two subsystems stable 75 (75)

N–P–Z–M and N–P–Z stable 0

Absolute numbers of random parameter sets that produced various stability

the unstable systems showed extinction of the herbivore or the mixotroph (w
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Fig. 4. Return of system (1)–(4) to its equilibrium after perturbing the

nutrients by a two-fold increase (straight lines) or decrease (dashed

line).
are simple non-chaotic oscillations. It should be pointed
out that extinction of the herbivore or coexistence was
always equivalent to violation or fulfilling of the
invasion criterion (B.1) (see Appendix B). This criterion
is much less costly to calculate than to simulate system
(1)–(4) numerically. We can conclude that the system
with biologically relevant parameters (lognormally
distributed) is more likely to show a stable equilibrium
and any population fluctuations would arise from
exogeneous stochastic forcing.

Invasion of the subsystems N � P � Z or N � P � M

by the mixotroph or the herbivore species respectively
have been mentioned several times. This is interesting to
explore because extinction is possible in our local model,
but the invasibility criterion (see Appendix B) tells us
whether recolonization is possible given the relative
competitive and consumptive abilities of the autotrophs,
herbivores and mixotrophs. A necessary condition for a
successful invasion is that the per capita rate of change
of the invading population must be positive for low
densities of this population. Testing these conditions
with the estimated parameters in Table 1 we get positive
values in both cases that are of the same magnitude
(although the herbivore has a per capita rate of change
that is 6 times larger than that of the mixotroph).
Therefore, invasion of both populations can be con-
sidered to be equally likely. It can also be shown that if
the autotroph goes extinct then the system N � M (the
herbivore will of course also go extinct without its prey)
has a unique stable equilibrium. With the estimated
parameters the autotroph can invade this system. We
have therefore full mutual invasibility in our real system.

4.2. Existence and stability of the whole system in

relation to mixotrophic behavior and recycling

In this section we will explore by analytical arguments
and by Monte-Carlo simulations the relation between
existence (and stability) of the non-trivial equilibrium
and the presence or absence of either the mixotrophic
link or recycling.
Uniform distribution

1,000,000

o recycling Recycling No recycling

0128 529 692

0128 436 690

0 90 (89) 2 (0)

0 3 (3) 0

behaviors (see text). The numbers in parentheses indicate how many of

ith subsequent stabilization of the subsystem).
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4.2.1. Mixotrophy and existence of equilibrium

For zero mixotrophy grazing, h ¼ 0; (8) ensures that
the condition 0oAoeg (equivalent to 0oA

eh
og

h
) will

always be fulfilled. A is a linear function in h and will
decrease with increasing h; but the interval ð0; egÞ
remains unchanged; therefore, an increasing h must be
compensated by an increasing herbivore grazing rate e

to maintain A in the interval ð0; egÞ: The difference H �
G will always be positive as mentioned above, but it may
either increase or decrease with increasing h: Fig. 5(a)
illustrates this relationship: while with the estimated
parameters H � G increases with increasing h; a slightly
different value for rz results in the inverse relationship.
Similar results were obtained when testing the relation-
ship between the strength of the mixotrophic grazing
and the intervals for the other grazing parameters e and
g for which the non-trivial equilibrium exists (other
parameters fixed at their estimated value). With
increasing h; the existence interval for g becomes smaller
while the one for e increases. There is, therefore, no
unique connection between the strength of the mixo-
trophic grazing link and the interval of values of f ; g

and e for which an equilibrium exists.
To corroborate these findings we tested the full 4-level

system for existence with randomly generated parameter
sets with either ha0 or h ¼ 0: We calculated the
proportions of all the random parameter sets where (1)
the system with and without mixotrophic link existed,
(2) only one of these systems existed and (3) neither of
them existed. This setup allows us to determine whether
the mixotrophic grazing link enlarges the parameter
region of existence. However, we cannot test if this link
reduces the region because the two systems being
compared have a different number of parameters; with
randomly chosen parameters a system with fewer
parameters is always equally or more likely to exist.
The results are summarized in Fig. 6. In most cases the
system without the mixotrophic grazing interaction is
more likely to exist. However, the single case in which
the mixotrophic link produces an increased range of
existence of a (stable or unstable) equilibrium is the most
ecologically realistic case: the lognormal distribution
with recycling.
0.8 1.0* 1.2 1.4
h

0.5

0.6

H
-G

rz=0.3

rz=0.25

rz=0.19

(a)

Fig. 5. Sensitivity of the region in parameter space where an equilibrium exi

H � G is plotted in (a) against h with different values of rz: In (b) the straigh

size (r), the dashed lines are the difference if either rz or rm is fixed to the es
4.2.2. Recycling and existence of equilibrium

For simplification let r :¼ rm ¼ rz: The interval ð0; egÞ
is not affected by this parameter, and A is a linear
function of r; so recycling does not influence the
likelihood that the first inequality in condition (10) will
be fulfilled. Since H � G ¼ ð1� hlz

elm
ÞH (see Appendix A)

we can study the influence of recycling on the size of
H � G by studying @H

@r
only. Because of condition (7) we

have @A
@r
40: @H

@A
is in general either positive or negative,

but for the estimated parameters and a recycling rate
rAð0; 0:3Þ; it is negative (note that B has been replaced
by eg � A for this and the following computation). Since
@H
@r

¼ @H
@A

@A
@r

we can conclude that recycling will reduce the
region in parameter space for which an equilibrium
exists. This is illustrated in Fig. 5b: the positive slope of
@H
@rm

(the dashed curve where rz is fixed) is annuled by the
negative slope of @H

@rz
(the dashed curve where rm is fixed)

again because of condition (7). A numerical existence
analysis for the parameters g and e in relation to r

reveals a slight increase of the existence interval for g

with increasing r: In contrast, e has only a lower bound
for ro0:32: For larger r no equilibrium exists.
rm=rz=r

rm fixed

rz fixed

0 0.05 0.1 0.15 0.2
r (or rm or rz)
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sts to the mixotrophic interaction (a) and recycling (b). The difference

t line is the difference H � G if both recycling coefficients are the same

timated value and the other parameter is varied.
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4.2.3. Mixotrophy and stability

Plotting the real part of the dominant eigenvalue l of
the community matrix with the estimated parameters
(see Fig. 7a) we see that in the neighborhood of the
estimated value of h increasing mixotrophic activity is
stabilizing, but further away the equilibrium may
become either more or less stable. To test the general
impact of mixotrophy on stability we used all of the
random parameter sets where the equilibrium for the full
system, both with and without the mixotrophic grazing
link (ha0 or h ¼ 0), existed and was stable. For these
parameter sets we then calculated the logarithm of the
ratio of the dominant eigenvalue with mixotrophic link
divided by the dominant eigenvalue without mixo-
trophic link ðlogðReðlha0Þ

Reðlh¼0Þ
Þ; calculated numerically).

Therefore, a positive value indicates that the system
with mixotrophic grazing link is more stable. Fig. 8
shows the distributions of these values for lognormal
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(a) and (c) show the distributions with or without recycling for the logn

distributions for the uniform random parameter sets.
and uniform random parameter sets, both with and
without recycling. These distributions confirm the trend
described in the paragraph about existence, i.e., the real
system is in a region of the parameter space where the
mixotrophic link has a stabilizing effect. In contrast,
using the biologically less realistic uniform distributions,
mixotrophy seems to have a slightly destabilizing effect.
Again, the latter observation might be a result of
comparing the stability of two systems with a different
number of parameters.

4.2.4. Recycling and stability

The stability of the equilibrium using the estimated
parameter set (Table 1) was examined in relation to
recycling (rz and rm) by plotting the dominant eigenva-
lue at the equilibrium (Fig. 7b). Increasing the recycling
rate (i.e., both rz and rm at the same rate) destabilizes the
equilibrium. This result corroborates the findings in
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Table 2 where most unstable equilibria occurred with
recycling.
5. Discussion

With ecologically realistic parameters our model
shows stable coexistence of autotrophs, mixotrophs
and herbivores at biologically reasonable concentra-
tions. This is consistent with the findings of Stickney
et al. (2000) and reinforces their suggestion that
mixotrophy is a viable resource niche under summertime
quasi-steady-state conditions.

The model has in general a stable equilibrium
(whenever it exists) or, in rare cases, oscillating
coexistence (maybe even chaotic behavior). This un-
stable coexistence can be predator-mediated, as recently
observed in model systems by Abrams (1999), or due to
the mixotrophic grazing link (Holt and Polis, 1997).
However, the simulations in the neighborhood of the
estimated parameters converged within weeks to a stable
equilibrium (Fig. 4). Therefore, assuming that our
model and parameters are ecologically realistic, then
an absence of observed equilibrium states in the ocean
cannot be attributed to chaotic dynamics; alteration of
the environmental forcing producing stochasticity in the
parameters would instead be responsible for fluctuating
population densities that appear to be chaotic (Hastings,
1995). Studying the time evolution of the model when
such disturbances are included may give further insight
into the system. The absence of chaotic dynamics is
consistent with the general trend that either a productive
environment or very high turnover rates are necessary
prerequisites for chaotic dynamics (McCann and Yod-
zis, 1994); our model parameters describe a system with
a moderate turnover rate and low standing crop.
However, phase-locking with environmental fluctua-
tions could occur, driving the system to truly chaotic
dynamics.

Pulse perturbations of our model can lead to
herbivore extinction. However, because the mutual
invasibility criterion is assured (see Appendix B),
extinction of a species in the system does not imply
permanent exclusion of the locally extinct species. If we
consider the model to be a local dynamical description,
the mutual invasibility criterion together with the
possibility of migrations from neighboring areas or
mixing in the ocean’s surface layer permit recolonization
and make a strong ‘‘plausibility argument’’ (Yodzis,
1989) for coexistence of all trophic species.

There is no unidirectional trend in the influence of the
mixotrophic grazing parameter h nor the recycling rates
rm and rz on the size of the parameter space where an
equilibrium exists. However, the system as parameter-
ized for the ocean appears to lie in a parameter region
where increasing h increases the existence interval while
increasing recycling decreases this interval. Moreover,
mixotrophy has a stabilizing effect on equilibrium points
in this area of parameter space. This stabilizing effect
appears to overcome the general destabilizing effect that
is caused by tight recycling (e.g., DeAngelis, 1992). This
effect may be similar to the stabilizing effect caused by
prey switching in model systems (e.g., Murdoch and
Oaten, 1975; Tansky, 1978).

The relationship between the mixotroph and auto-
troph in our model system is more similar to that of
intraguild predation (IGP) than of simple prey switch-
ing. The hallmark of IGP is that the intraguild predator
reduces the pressure of competition for a resource by
preying upon its competitor (Polis et al., 1989; Holt
and Polis, 1997). This is the same relationship that the
mixotroph and autotroph exhibit in the studied
model: they compete for nutrients and the mixotroph
grazes on the autotroph, thereby reducing competitive
effects of the autotroph. The mixotrophic link thus
permits the two competitors to coexist on a unique
resource, which is also one of the features of IGP.
The principal difference between existing models on IGP
and mixotrophy lies in the ‘‘growth’’ function of the
lowest trophic level, f ðPÞP for living organisms com-
pared to In � rnN for nutrients. None of the results
mentioned in Polis et al. (1989) or Holt and Polis (1997)
seems to be sensitive to this difference. Furthermore,
McCann and Hastings (1997) observed that the omni-
vorous link in a classical IGP model stabilizes the system
(experimentally confirmed by Holyoak and Sachdev,
1998), similar to the stabilizing effect of our mixotrophic
link. This reinforces the idea that IGP theory also
applies to the mixotrophic nutritional link and that it is
instructive to think of mixotrophy in the ocean in this
context.

As mentioned by Polis and Strong (1996), mixotrophy
is one factor undermining the concept of discrete
trophic levels. As such, planktonic interactions in
aquatic food webs are more complex than can be
described by simple food chains. Studying simple model
systems that include mixotrophy or other forms of IGP
may increase our understanding of how these interac-
tions may influence the dynamics of planktonic food
webs. However, static analysis must be applied with care
to systems in fluctuating environments such as the
ocean. For example, nutrient recycling is destabilizing
under static, equilibrium conditions (DeAngelis, 1992)
but it can be beneficial in maintaining systems under
more realistically fluctuating conditions (Stone and
Berman, 1993). As such, the analysis presented in this
paper is only a starting point for understanding the
influence of mixotrophy on planktonic food webs.
Simulations with fluctuating/periodic parameters may
give further insights into the adequacy and the
predictive power of our model to describe plankton
dynamics.
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6. Conclusion

Our simple planktonic food web has shown that
mixotrophy of an organism can mediate coexistence
with other competitors (equivalent to intraguild preda-
tion), and that the planktonic system as parameterized
for the ocean resides in a region of the parameter space
where this mixotrophic link enhances stability, over-
coming the destabilizing effect of rapid nutrient
recycling. In this region, mixotrophy also enhances
existence of a non-trivial equilibrium. Thus, mixotrophy
may be an important stabilizing link in ocean planktonic
ecosystems.
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Appendix A. The equilibrium of the 4-level system and its

subsystems

Setting Eq. (4) equal to 0 gives us the equilibrium of
the autotrophs,

P% ¼ lz þ rz

e
:

Using this result and setting Eq. (3) equal to 0 gives us
the equilibrium for the dissolved nutrient,

N% ¼ kmðeðlm þ rmÞ � hðlz þ rzÞÞ
eg � ðeðlm þ rmÞ � hðlz þ rzÞÞ

¼:
kmA

B
:

Now setting Eqs. (1) and (2) equal to 0 gives the
equilibria for the nutrient contained in the mixotrophs
and the nutrient contained in the autotrophs,

M% ¼ CðeðegIn � Aðkmln þ InÞÞ þ Bðrplz � rzlpÞÞ � fABlzkm

BCðelm � hlzÞ
;

Z% ¼ Afkm � Cðlp þ rpÞ
eC

� h

e
M%;

with C ¼ Akm þ Bkp: Now we may derive the condi-
tions for which this equilibrium is positive. For elm4hlz
we get:
For elmohlz the latter two inequalities change the
direction. If there is no washout or recycling from the
autotrophs ðlp ¼ rp ¼ 0Þ a necessary condition for
Eq. (A.1) to hold is

In4
Alnkm

eg � A
¼ lnN%:

This is biologically meaningful since the nutrient inflow
must be bigger than the nutrient outflow from one
compartment.

A.1. The subsystem without mixotrophs

Let rp ¼ lp ¼ 0: Eq. (15) immediately yields

P%
3;M ¼ lz þ rz

e
40:

Substituting this solution into Eqs. (13) and (14)
allows to solve them for the remaining two
equilibria:

N%
3;M ¼ D þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4e2Inkpln þ D2

p
2eln

40;

Z%
3;M ¼ f

e
� 2fkpln

D þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ðIn þ kplnÞ2 � lzf ð2D þ flzÞ

q

with D ¼ eIn � ekpln � flz: Z%
3;M may be positive.
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The community matrix (the Jacobian at the equili-
brium points) at this equilibrium has the form

�ln � fP%
3;M

kp

ðkpþN%
3;M

Þ2
�f

N%
3;M

kpþN%
3;M

rz

fP%
3;M

kp

ðkpþN%
3;M

Þ2
0 �eP%

3;M

0 eZ%
3;M 0

2
666664

3
777775

¼:

a11 a12 a13

a21 a22 a23

a31 a32 a33

2
64

3
75
�ln � fP%
3;Z

kp

ðkp þ N%
3;ZÞ

2
� gM%

3;Z

km

ðkm þ N%
3;ZÞ

2
�f

N%
3;Z

kp þ N%
3;Z

�g
N%

3;Z

km þ N%
3;Z

þ rm

fP%
3;Z

kp

ðkp þ N%
3;ZÞ

2
0 �hP%

3;Z

gM%
3;Z

km

ðkm þ N%
3;ZÞ

2
hM%

3;Z 0

2
6666666664

3
7777777775
and thus has the sign structure

� � þ
þ 0 �
0 þ 0

2
64

3
75:

Applying either a Routh–Hurwitz test or the color test
by Jeffries (1974) (both tests may be found in Edelstein-
Keshet (1988)) shows that this subsystem can have a
stable or unstable non-trivial equilibrium ðb1 ¼
�a1140; b3 ¼ a32a11a23 � a32a13a21 and b1b2 � b3 ¼
a11a12a21 � a13a21a32 may be positive or negative). If
we set rz ¼ 0 then we get the sign structure

� � 0

þ 0 �
0 þ 0

2
64

3
75:

In this system the Routh–Hurwitz conditions are always
fulfilled, therefore without recycling the food chain N �
P � Z has a stable non-trivial equilibrium whenever it
exists.

A.2. The subsystem without herbivores

This system has at most one positive equilibrium

N%
3;Z ¼ E þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4h2Inkpln þ E2

p
2hln

;

M%
3;Z ¼

fN%
3;Z

hðkp þ N%
3;ZÞ

;

P%
3;Z ¼

kmlm þ kmrm þ N%
3;Zðlm þ rm � gÞ

hðkm þ N%
3;ZÞ

ðA:2Þ

with E ¼ hIn � flm � hkpln: N%
3;Z and M%

3;Z are always
positive, while P%

3;Z is positive whenever the numerator
of Eq. (A.2) is positive, which is equivalent to Eq. (19).
Biologically this means that P%

3;Z is positive whenever
the mixotrophs do not gain more nutrients by photo-
synthesis than they lose through washout and recycling.

The community matrix at this equilibrium has the
form
and thus has the sign structure

� � ?

þ 0 �
þ þ 0

2
64

3
75:

Applying Routh–Hurwitz shows that this equilibrium
may be unstable.
Appendix B. Criteria for invasion

A necessary condition for a population to invade an
existing system is that the invader can grow at low
densities. Since its growth rate depends on the abun-
dances of the other populations it is usually assumed
that these populations are at equilibrium before the
invasion. For our system this means that for herbivore
or mixotroph invasions, respectively, the following
conditions must hold:

1

Z

dZ

dt
¼ eP%

3;: � lz � rz40; ðB:1Þ
1

M

dM

dt
¼ g

N%
3;:

km þ N%
3;:

þ hP%
3;: � lm � rm40; ðB:2Þ

where N%
3;: and P%

3;: are the (positive) equilibria of the
relevant 3-population subsystem before the invasion (see
Appendix A).
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Appendix C. Parameter estimation from the literature

The 4-level model contains 14 parameters, many of
which are not spatially and temporally constant in the
ocean. To circumvent this problem, we adopted the
general conditions seen during the North Atlantic
Bloom Experiment (NABE, see Ducklow and Harris,
1993) as a framework to guide our estimates of
parameters. Collection of much of the NABE data
occurred during the end of the spring phytoplankton
bloom and during the development of the summer
microbially dominated planktonic food web. Where
possible, we have derived our parameters from NABE
or from areas with similar oceanographic conditions;
however, it should be noted that because of the number
of parameter estimates needed for the model that it was
necessary to take some parameters from systems
dissimilar to the NABE conditions. As such, a few
parameter ranges were altered ad hoc to obtain positive
model equilibria. The parameter value ranges and
standard values estimated are summarized in Table 1.

The nutrient input rate to the system, In; which we
take to be the nitrate flux into the mixed layer, was
estimated from Fasham et al. (1990) (hereafter referred
to as FDM) by two different methods. First, the annual
nitrate flux from FDM’s Fig. 17 was converted to an
average daily flux, assuming a typical NABE mixed
layer depth of 30 m (Marra and Ho, 1993). Second, the
second term in FDM’s Eq. (19) was used to calculate the
nitrate input by using the FDM standard run across
thermocline mixing rate and assuming that (1) the mixed
layer depth was 30 m (Marra and Ho, 1993) and
constant and (2) the nitrate concentrations above and
below the mixed layer were 2 and 9 mM; respectively, as
seen during NABE (Garside and Garside, 1993). These
two estimates bracket the range for In given in Table 1.
These two methods were also used to estimate the range
for ln:

For the biological components of the system, several
assumptions were made to constrain the estimation of
parameters. First, the autotrophs, mixotrophs and
herbivores were assumed to have equivalent spherical
diameters of 10, 40, and 40 mm; respectively. Volume
specific carbon contents were assumed to be constant
but were estimated separately for each component
(Sieracki et al., 1993; Putt and Stoecker, 1989; Verity
and Langdon, 1984 and references contained therein).
The relationship between carbon and chlorophyll was
assumed to be invariant and a ratio of 40 was used
(Morales et al., 1991). The Redfield ratio was used to
convert between carbon and nitrogen for all compo-
nents.

The input rates of regenerated nutrient to the system
(i.e., ammonium input) was estimated separately for the
autotrophs, mixotrophs and herbivores, assuming that
there was no non-biological loss from the system (i.e., no
downward diffusion out of the mixed layer) and that
regeneration was instantaneous. The data on cell-
specific nitrogen regeneration rates for the mixotrophs
and herbivores were estimated from estuarine and
freshwater organisms (Gast and Horstmann, 1983;
Verity, 1985) because data for the open ocean were
not available; these values were converted to appro-
priate units using the conversion factors as discussed
above. Because these estimates were not based on the
species present during NABE, we chose an interval
within the estimated range consistent with the assumed
sizes and characteristics of our model constituents.

The loss rates of herbivores and mixotrophs from the
model were assumed to be equivalent to grazing on these
constituents by higher trophic levels. Non-grazing losses
were considered to be negligible to simplify the model.
The grazing rates of microzooplankton and mesozoo-
plankton on phytoplankton were measured during
NABE (Lenz et al., 1993). These grazing rates were
assumed to also represent the potential range of grazing
rates of higher trophic levels (e.g., copepods) upon the
mixotrophs and herbivores.

The nutrient uptake parameters for the autotroph and
mixotroph were estimated as follows. The maximum
nutrient uptake rates for the autotroph and mixotroph
were calculated from the allometric equations of
Moloney and Field (1989). These calculations assumed
the previously listed cell sizes and conversion factors for
volume specific carbon content. The range of values
calculated for the autotroph compared favorably with
those of Lieberman et al. (1994) while those of the
mixotroph were similar to those of coastal dinoflagel-
lates (Neuer and Cowles, 1995). However, because it
was not possible to estimate all of the necessary
parameters from NABE and because preliminary
simulations showed that using an autotroph maximum
nutrient uptake rate in the range calculated from
Moloney and Field (1989) destabilized the model
(resulting in extinction of the herbivores), the maximum
values adopted (Table 1) were somewhat lower than
those calculated from Moloney and Field (1989). The
range of half-saturation constants from the literature
spanned 0.2–0:6 mmol N m�3 (Fasham et al., 1990;
Marra and Ho, 1993). A slightly higher half-saturation
constant was used for the mixotroph compared to that
of the autotroph as justified above.

The Lotka–Volterra grazing parameters for the
mixotroph and herbivore were estimated by assuming
that the parameter is equivalent to the initial slope of the
saturating functional response curve for grazing. The
ingestion rate of the herbivore was calculated from the
grazing data in Fig. 3 of Verity (1985) with cell sizes
taken from Verity and Langdon (1984); the ingestion
rate was converted to appropriate units using the factors
described above. The organisms in Verity (1985) were
larger and smaller than our assumed herbivore size in
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the model; therefore, these ingestion rates were assumed
to represent the range of possible ingestion rates. The
average mixotroph ingestion rate was calculated from
that of the herbivore average ingestion rate assuming
that the ratio of the mixotroph to ciliate grazing rate was
0.44; this ratio was derived by averaging available
grazing rates for similar sized ciliates (taken to be the
herbivore) and gymnodinoids (taken to be the mixo-
troph) from Neuer and Cowles (1995). This method was
used rather than the equation of Moloney and Field
(1989) because that equation was derived from a data set
comprised mostly of grazing rates from much larger
animals.
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